-$69.68 is your answer if I hope that this is correct.
Answer:
tan(2u)=[4sqrt(21)]/[17]
Step-by-step explanation:
Let u=arcsin(0.4)
tan(2u)=sin(2u)/cos(2u)
tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]
If u=arcsin(0.4), then sin(u)=0.4
By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.
This also implies cos(u)=sqrt(0.84) since cosine is positive.
Plug in values:
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]
tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]
tan(2u)=[(40)(sqrt(0.84)]/[34]
tan(2u)=[(20)(sqrt(0.84)]/[17]
Note:
0.84=0.04(21)
So the principal square root of 0.04 is 0.2
Sqrt(0.84)=0.2sqrt(21).
tan(2u)=[(20)(0.2)(sqrt(21)]/[17]
tan(2u)=[(20)(2)sqrt(21)]/[170]
tan(2u)=[(2)(2)sqrt(21)]/[17]
tan(2u)=[4sqrt(21)]/[17]
Answer: 
This is the same as writing (n-m)/n
Don't forget about the parenthesis if you go with the second option.
==================================================
Explanation:
The probability that she wins is m/n, where m,n are placeholders for positive whole numbers.
For instance, m = 2 and n = 5 leads to m/n = 2/5. This would mean that out of n = 5 chances, she wins m = 2 times.
The probability of her not winning is 1 - (m/n). We subtract the probability of winning from 1 to get the probability of losing.
We could leave the answer like this, but your teacher says that the answer must be "in the form of a combined single fraction".
Doing a bit of algebra would have these steps

and now the expression is one single fraction.