A) maximum mean weight of passengers = <span>load limit ÷ number of passengers
</span><span>
maximum mean weight of passengers = 3750 </span>÷ 25 = <span>150lb
</span>B) First, find the z-score:
z = (value - mean) / stdev
= (150 - 199) / 41
= -1.20
We need to find P(z > -1.20) = 1 - P(z < -1.20)
Now, look at a standard normal table to find <span>P(z < -1.20) = 0.11507, therefore:
</span>P(z > -1.20) = 1 - <span>0.11507 = 0.8849
Hence, <span>the probability that the mean weight of 25 randomly selected skiers exceeds 150lb is about 88.5%</span> </span>
C) With only 20 passengers, the new maximum mean weight of passengers = 3750 ÷ 20 = <span>187.5lb
Let's repeat the steps of point B)
z = (187.5 - 199) / 41
= -0.29
P(z > -0.29) = 1 - P(z < -0.29) = 1 - 0.3859 = 0.6141
</span>Hence, <span>the probability that the mean weight of 20 randomly selected skiers exceeds 187.5lb is about 61.4%
D) The mean weight of skiers is 199lb, therefore:
number</span> of passengers = <span>load limit ÷ <span>mean weight of passengers
= 3750 </span></span><span>÷ 199
= 18.8
The new capacity of 20 skiers is safer than 25 skiers, but we cannot consider it safe enough, since the maximum capacity should be of 18 skiers.</span>
Answer:
5 hours
Step-by-step explanation:
if it is 15 an hour in total for the truck and dolly is 5 baseline then 15*5=75+5=80
Complete Question
In ΔUVW, w = 9 cm, v = 22 cm and ∠V=136°. Find all possible values of ∠W, to the nearest 10th of a degree.
Answer:
16.5°
Step-by-step explanation:
In ΔUVW, w = 9 cm, v = 22 cm and ∠V=136°. Find all possible values of ∠W, to the nearest 10th of a degree.
We solve using Sine rule formula
a/sin A = b/sin B
We are solving for angle W
∠V=136°
Hence:
22 /sin 136 = 9 /sin W
Cross Multiply
22 × sin W = sin 136 × 9
sin W = sin 136 × 9/22
W = arc sin [sin 136 × 9/2.2]
W = 16.50975°
W = 16.5°
Answer:
2/2 = 1
Step-by-step explanation:
y2 - y1 4 - 2 2 Equals 1
x2 - x1 8 - 6 2
Answer:
84 seconds
Step-by-step explanation:
Because if you divide all of that you would get that answer