I will assume you mistyped this question. For y = -1/16x^2 + 4x + 3, the answers to this question are
a) 3 feet
b) 67 feet
c) 64.741 feet
For a) we note that at x = 0, that is the instant where the ball leaves the hand. y(0) = 0.
For b), we find the vertex of y = -1/16x^2 + 4x + 3
y = -1/16x^2 + 4x + 3
y = -1/16(x^2 - 64x) + 3
y = -1/16(x^2 - 64x + 1024 - 1024) + 3
y = -1/16((x-32)^2 - 1024) + 3
y = -1/16(x-32)^2 + 64 + 3
y = -1/16(x-32)^2 + 67
The vertex is at (32,67) so 67 is the maximum height.
For c), we find the x-intercepts with the quadratic formula on
y = -1/16x^2 + 4x + 3=0:
x = [ -b ± √b^2 - 4ac ] / (2a)<span>
x = [ -4 ± √4^2 - 4(-1/16)(3) ] / (2(-1/16))
x = -0.741, 64.741
Only the positive solution, so 64.741 feet </span>
Is there supposed to me a picture or what?
Answer:
Step-by-step explanation:
First find the area of total rectangle which equals 20 * 12 = 240
Second find the area of triangle which equals 0.5 * 4 * 6 = 12
The required area = total rectangle - triangle = 240 - 12 = 228
Answer:
20 degree
Step-by-step explanation:
x + x + 70 = 110 degree (sum of two opposite interior angle equal to the exterior angle formed)
2x = 110 - 70
x = 40/2
x = 20 degree