1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
2 years ago
5

Factor completely. 75u^3- 12u --

Mathematics
2 answers:
mart [117]2 years ago
8 0
3u (5u + 2) (5u - 2)
Serhud [2]2 years ago
5 0

Answer:

(3u) (5u + 2) (5u - 2)

Step-by-step explanation:

75u³ - 12u

3u (25u² - 4)

3u (5u + 2) (5u - 2)

You might be interested in
Food brand names suggest 4 or more
Ilia_Sergeevich [38]
Heinz,Pepsi,Coca-Cola,Kitkat
8 0
2 years ago
Read 2 more answers
An isosceles right-angled triangle is shown.
Bad White [126]

Answer:

\boxed{x=4}

Step-by-step explanation:

Area of triangle = 0.5 × Base × Height

→ Substitute in the values

200 = 0.5 × 5x × 5x

→ Simplify

200 = 12.5x²

→ Divide both sides by 12.5

16 = x²

→ Square root both sides

4 = x ∴ x = 4

6 0
3 years ago
Using Laplace transforms, solve x" + 4x' + 6x = 1- e^t with the following initial conditions: x(0) = x'(0) = 1.
professor190 [17]

Answer:

The solution to the differential equation is

X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)

Step-by-step explanation:

Applying Laplace Transform will help us solve differential equations in Algebraic ways to find particular  solutions, thus after applying Laplace transform and evaluating at the initial conditions we need to solve and apply Inverse Laplace transform to find the final answer.

Applying Laplace Transform

We can start applying Laplace at the given ODE

x''(t)+4x'(t)+6x(t)=1-e^t

So we will get

s^2 X(s)-sx(0)-x'(0)+4(sX(s)-x(0))+6X(s)=\cfrac 1s -\cfrac1{s-1}

Applying initial conditions and solving for X(s).

If we apply the initial conditions we get

s^2 X(s)-s-1+4(sX(s)-1)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Simplifying

s^2 X(s)-s-1+4sX(s)-4+6X(s)=\cfrac 1s -\cfrac1{s-1}

s^2 X(s)-s-5+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Moving all terms that do not have X(s) to the other side

s^2 X(s)+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}+s+5

Factoring X(s) and moving the rest to the other side.

X(s)(s^2 +4s+6)=\cfrac 1s -\cfrac1{s-1}+s+5

X(s)=\cfrac 1{s(s^2 +4s+6)} -\cfrac1{(s-1)(s^2 +4s+6)}+\cfrac {s+5}{s^2 +4s+6}

Partial fraction decomposition method.

In order to apply Inverse Laplace Transform, we need to separate the fractions into the simplest form, so we can apply partial fraction decomposition to the first 2 fractions. For the first one we have

\cfrac 1{s(s^2 +4s+6)}=\cfrac As + \cfrac {Bs+C}{s^2+4s+6}

So if we multiply both sides by the entire denominator we get

1=A(s^2+4s+6) +  (Bs+C)s

At this point we can find the value of A fast if we plug s = 0, so we get

1=A(6)+0

So the value of A is

A = \cfrac 16

We can replace that on the previous equation and multiply all terms by 6

1=\cfrac 16(s^2+4s+6) +  (Bs+C)s

6=s^2+4s+6 +  6Bs^2+6Cs

We can simplify a bit

-s^2-4s=  6Bs^2+6Cs

And by comparing coefficients we can tell the values of B and C

-1= 6B\\B=-1/6\\-4=6C\\C=-4/6

So the separated fraction will be

\cfrac 1{s(s^2 +4s+6)}=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6}

We can repeat the process for the second fraction.

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac A{s-1} + \cfrac {Bs+C}{s^2+4s+6}

Multiplying by the entire denominator give us

1=A(s^2+4s+6) + (Bs+C)(s-1)

We can plug the value of s = 1 to find A fast.

1=A(11) + 0

So we get

A = \cfrac1{11}

We can replace that on the previous equation and multiply all terms by 11

1=\cfrac 1{11}(s^2+4s+6) + (Bs+C)(s-1)

11=s^2+4s+6 + 11Bs^2+11Cs-11Bs-11C

Simplifying

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C

And by comparing coefficients we can tell the values of B and C.

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C\\-1=11B\\B=-\cfrac{1}{11}\\5=-11C\\C=-\cfrac{5}{11}

So the separated fraction will be

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac {1/11}{s-1} + \cfrac {-s/11-5/11}{s^2+4s+6}

So far replacing both expanded fractions on the solution

X(s)=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6} -\cfrac {1/11}{s-1} -\cfrac {-s/11-5/11}{s^2+4s+6}+\cfrac {s+5}{s^2 +4s+6}

We can combine the fractions with the same denominator

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {-s/6-4/6+s/11+5/11+s+5}{s^2 +4s+6}

Simplifying give us

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{s^2 +4s+6}

Completing the square

One last step before applying the Inverse Laplace transform is to factor the denominators using completing the square procedure for this case, so we will have

s^2+4s+6 = s^2 +4s+4-4+6

We are adding half of the middle term but squared, so the first 3 terms become the perfect  square, that is

=(s+2)^2+2

So we get

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{(s+2)^2 +(\sqrt 2)^2}

Notice that the denominator has (s+2) inside a square we need to match that on the numerator so we can add and subtract 2

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2-2)/66+316 /66}{(s+2)^2 +(\sqrt 2)^2}\\X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66+194 /66}{(s+2)^2 +(\sqrt 2)^2}

Lastly we can split the fraction one more

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66}{(s+2)^2 +(\sqrt 2)^2}+\cfrac {194 /66}{(s+2)^2 +(\sqrt 2)^2}

Applying Inverse Laplace Transform.

Since all terms are ready we can apply Inverse Laplace transform directly to each term and we will get

\boxed{X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)}

6 0
4 years ago
The cost of purchasing four shirts is at least $120. Write an inequality to describe this situation.
const2013 [10]
Im so sorry but I didn't learn that yet
6 0
3 years ago
What is the following quotient
Likurg_2 [28]

Answer:

Rationalize the denominator by multiplying by the conjugate of (1 + √3), namely (1 - √3). this gives us

(1 - √3) / (1 - 3) or (1 - √3) / -2, which can be rewritten as

(-1 + √3)/2, the last answer choice.

7 0
3 years ago
Other questions:
  • Solve the following linear program using the graphical solution procedure: Max 5A + 5B s.t. 1A lessthanorequalto 100 1B lessthan
    13·1 answer
  • I need help with this. Thank you so much!
    15·2 answers
  • Ellen made pudding for dessert. She collected data on the temperature of the pudding as she was cooking, as graphed below. What
    12·2 answers
  • Find f(-2) for f(x) = 2*3^x
    5·2 answers
  • Find the measure of angle x in the figure below:
    15·2 answers
  • Help me please please​
    13·1 answer
  • In what direction is the line containing the point (5, -6) and (-2, -6) going
    14·1 answer
  • How do you find the sum of the first 25 terms in a sequence?
    5·2 answers
  • 4(2x - 5) + 15 = 11<br><br>Please exsplain step by step. Thank you x
    15·1 answer
  • Please help me.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!