Let L be the length and W be the width.
"the width of a rectangle is half as long as the length"
W = (1/2)·L
"the rectangle has an area of 18 square feet"
A = L·W = 18
Substitute,
L·W = 18
L·(1/2)·L = 18
(L²)/2 = 18
L² = 36
L = 6 feet
then W = (1/2) · L
W = (1/2) · 6
W = 3 feet
Answer:
Step-by-step explanation:
![\sf \dfrac{1}{3}a^3-\dfrac{3}{4}a^2-\dfrac{5}{2}-\left[\dfrac{5}{2}a^2+\dfrac{3}{2}a^3+\dfrac{a}{3}-\dfrac{6}{5}\right]=](https://tex.z-dn.net/?f=%5Csf%20%5Cdfrac%7B1%7D%7B3%7Da%5E3-%5Cdfrac%7B3%7D%7B4%7Da%5E2-%5Cdfrac%7B5%7D%7B2%7D-%5Cleft%5B%5Cdfrac%7B5%7D%7B2%7Da%5E2%2B%5Cdfrac%7B3%7D%7B2%7Da%5E3%2B%5Cdfrac%7Ba%7D%7B3%7D-%5Cdfrac%7B6%7D%7B5%7D%5Cright%5D%3D)
![\sf = \dfrac{1}{3}a^3-\dfrac{3}{4}a^2-\dfrac{5}{2}-\dfrac{5}{2}a^2-\dfrac{3}{2}a^3-\dfrac{a}{3}+\dfrac{6}{5}\\\\\\( Combine \ like \ terms)\\\\= \dfrac{1}{3}a^3 -\dfrac{3}{2}a^3 -\dfrac{3}{4}a^2-\dfrac{5}{2}a^2-\dfrac{a}{3}-\dfrac{5}{2}+\dfrac{6}{5}\\\\=\left[\dfrac{1*2}{3*2}-\dfrac{3*3}{2*3}\right]a^3 + \left[-\dfrac{3}{4}-\dfrac{5*2}{2*2}\right]a^2-\dfrac{a}{3}+\left[-\dfrac{5*5}{2*5}+\dfrac{6*2}{5*2}\right]\\\\\\](https://tex.z-dn.net/?f=%5Csf%20%3D%20%20%5Cdfrac%7B1%7D%7B3%7Da%5E3-%5Cdfrac%7B3%7D%7B4%7Da%5E2-%5Cdfrac%7B5%7D%7B2%7D-%5Cdfrac%7B5%7D%7B2%7Da%5E2-%5Cdfrac%7B3%7D%7B2%7Da%5E3-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cdfrac%7B6%7D%7B5%7D%5C%5C%5C%5C%5C%5C%28%20Combine%20%5C%20like%20%5C%20terms%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B3%7Da%5E3%20-%5Cdfrac%7B3%7D%7B2%7Da%5E3%20-%5Cdfrac%7B3%7D%7B4%7Da%5E2-%5Cdfrac%7B5%7D%7B2%7Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D-%5Cdfrac%7B5%7D%7B2%7D%2B%5Cdfrac%7B6%7D%7B5%7D%5C%5C%5C%5C%3D%5Cleft%5B%5Cdfrac%7B1%2A2%7D%7B3%2A2%7D-%5Cdfrac%7B3%2A3%7D%7B2%2A3%7D%5Cright%5Da%5E3%20%2B%20%5Cleft%5B-%5Cdfrac%7B3%7D%7B4%7D-%5Cdfrac%7B5%2A2%7D%7B2%2A2%7D%5Cright%5Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cleft%5B-%5Cdfrac%7B5%2A5%7D%7B2%2A5%7D%2B%5Cdfrac%7B6%2A2%7D%7B5%2A2%7D%5Cright%5D%5C%5C%5C%5C%5C%5C)
![\sf ==\left[\dfrac{2}{6}-\dfrac{9}{6}\right]a^3+\left[-\dfrac{3}{4}-\dfrac{10}{4}\right]a^2-\dfrac{a}{3}+\left[-\dfrac{25}{10}+\dfrac{12}{10}\right]\\\\=\dfrac{2-9}{6}a^3+\dfrac{(-3-10)}{4}a^2-\dfrac{a}{3}+\dfrac{(-25+12)}{15}\\\\](https://tex.z-dn.net/?f=%5Csf%20%3D%3D%5Cleft%5B%5Cdfrac%7B2%7D%7B6%7D-%5Cdfrac%7B9%7D%7B6%7D%5Cright%5Da%5E3%2B%5Cleft%5B-%5Cdfrac%7B3%7D%7B4%7D-%5Cdfrac%7B10%7D%7B4%7D%5Cright%5Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cleft%5B-%5Cdfrac%7B25%7D%7B10%7D%2B%5Cdfrac%7B12%7D%7B10%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cdfrac%7B2-9%7D%7B6%7Da%5E3%2B%5Cdfrac%7B%28-3-10%29%7D%7B4%7Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cdfrac%7B%28-25%2B12%29%7D%7B15%7D%5C%5C%5C%5C)
Answer:
Explain what you mean please :)?
Step-by-step explanation:
You would have to subtract 5 on both sides to isolate the variable.
-3x + 5 < 23
- 5 - 5
------------------
-3x < 18
divide both sides by -3.
-3x < 18
x > -6
Hope this helped!
This problem can be solved by using the binomial distribution.
p = 30% = 0.3 is the probability that a teacher was laid off.
q = 1 -p = 0.7 is the probability that a teacher was not laid off.
n = 16 is the sample size.
r = 7 is the expected number of teachers who were laid off
The probability that 7 out of 16 teachers were laid off is
₁₆C₇ p⁷q⁽¹⁶⁻⁷⁾ = 11440*(0.3⁷)*(0.7⁹) = 0.101 =10.1%
Answer:
The probability is 0.101 or 10.1%