Answer:

Step-by-step explanation:

Answer: 2/25
Step-by-step explanation:
The formula to find the slope is (y2-y1)/(x2-x1)
If you plug in the numbers, you get (18-14)/(30-(-20))
Solve the expression and you get 4/50 = 2/25
So your answer is 2/25
Answer:
- <u>Question 1:</u>
<u />
<u />
- <u>Question 2:</u>
<u />
<u />
- <u>Question 3:</u>
<u />
<u />
- <u>Question 4:</u>
<u />
Explanation:
<u>Question 1: Write down the differential equation the mass of the bacteria, m, satisfies: m′= .2m</u>
<u></u>
a) By definition: 
b) Given: 
c) By substitution: 
<u>Question 2: Find the general solution of this equation. Use A as a constant of integration.</u>
a) <u>Separate variables</u>

b)<u> Integrate</u>


c) <u>Antilogarithm</u>



<u>Question 3. Which particular solution matches the additional information?</u>
<u></u>
Use the measured rate of 4 grams per hour after 3 hours

First, find the mass at t = 3 hours

Now substitute in the general solution of the differential equation, to find A:

Round A to 1 significant figure:
<u>Particular solution:</u>

<u>Question 4. What was the mass of the bacteria at time =0?</u>
Substitute t = 0 in the equation of the particular solution:

By knowing the <em>blood</em> pressure and applying the <em>quadratic</em> formula, the age of a man whose normal <em>blood</em> pressure is 129 mm Hg is 40 years old.
<h3>How to use quadratic equations to determine the age of a man in terms of blood pressure</h3>
In this problem we have a <em>quadratic</em> function that models the <em>blood</em> pressure as a function of age. As the latter is known, we must use the quadratic formula to determine the former:
129 = 0.006 · A² - 0.02 ·A + 120
0.006 · A² - 0.02 · A - 9 = 0

A = 1.667 + 38.733
A = 40
By knowing the <em>blood</em> pressure and applying the <em>quadratic</em> formula, the age of a man whose normal <em>blood</em> pressure is 129 mm Hg is 40 years old.
To learn more on quadratic equations: brainly.com/question/1863222
#SPJ1