1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
2 years ago
12

Find the domain of - y/(y-6) +15/(y+6) - y-10/y^2+3

Mathematics
1 answer:
ArbitrLikvidat [17]2 years ago
5 0

Answer:

Step-by-step explanation:

Domain of a function represents the set of x-values (input values) and y-values (output values) of the function represent the Range of the function.

Given function is,

If Domain (input values) of this function is,

{-12, -6, 3, 15}

Table for the input-output values of this function,

x        -6         3        15       -12

y        11         5         -3        15

You might be interested in
Purchase price
alekssr [168]

Answer:

B - either remains the same or increases

Step-by-step explanation:

5 0
2 years ago
Help me plzzzzzzzzzzzzzzzzzzzzzzz
jeka57 [31]

Idk the answer tether

4 0
2 years ago
PLEASE HELP ASAP i don’t have much time.
arlik [135]

Answer:

x=-3, d=2, e=3

Step-by-step explanation:

\frac{9a^3b^5}{-3ab^2} =\frac{9}{-3} \cdot\frac{a^3}{a} \cdot \frac{b^5}{b^2}

Recall how to divide exponents. For instance, a^3/a^1=a^{3-1}=a^2.

=-3a^2b^3

Thus, x=-3, d=2, e=3

7 0
2 years ago
I need to know how to solve the question correctly
Alja [10]
I'm not to good at math, but download a free app called photo math. Write out the equation neatly, and it will show you all of the steps! Hope this helped:)
3 0
3 years ago
Find the counterclockwise circulation and outward flux of the field F=7xyi+5y^2j around and over the boundary of the region C en
dezoksy [38]

Split up the boundary of <em>C</em> (which I denote ∂<em>C</em> throughout) into the parabolic segment from (1, 1) to (0, 0) (the part corresponding to <em>y</em> = <em>x</em> ²), and the line segment from (1, 1) to (0, 0) (the part of ∂<em>C</em> on the line <em>y</em> = <em>x</em>).

Parameterize these pieces respectively by

<em>r</em><em>(t)</em> = <em>x(t)</em> <em>i</em> + <em>y(t)</em> <em>j</em> = <em>t</em> <em>i</em> + <em>t</em> ² <em>j</em>

and

<em>s</em><em>(t)</em> = <em>x(t)</em> <em>i</em> + <em>y(t)</em> <em>j</em> = (1 - <em>t</em> ) <em>i</em> + (1 - <em>t</em> ) <em>j</em>

both with 0 ≤ <em>t</em> ≤ 1.

The circulation of <em>F</em> around ∂<em>C</em> is given by the line integral with respect to arc length,

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T \,\mathrm ds

where <em>T</em> denotes the <em>tangent</em> vector to ∂<em>C</em>. Split up the integral over each piece of ∂<em>C</em> :

• on the parabolic segment, we have

<em>T</em> = d<em>r</em>/d<em>t</em> = <em>i</em> + 2<em>t</em> <em>j</em>

• on the line segment,

<em>T</em> = d<em>s</em>/d<em>t</em> = -<em>i</em> - <em>j</em>

Then the circulation is

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(\mathbf i+2t\,\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i-\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (7t^3+10t^5)\,\mathrm dt - 12 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{-\frac7{12}}

Alternatively, we can use Green's theorem to compute the circulation, as

\displaystyle\int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \iint_C\frac{\partial(5y^2)}{\partial x} - \frac{\partial(7xy)}{\partial y}\,\mathrm dx\,\mathrm dy \\\\ = -7\int_0^1\int_{x^2}^x x\,\mathrm dx \\\\ = -7\int_0^1 xy\bigg|_{y=x^2}^{y=x}\,\mathrm dx \\\\ =-7\int_0^1(x^2-x^3)\,\mathrm dx = -\frac7{12}

The flux of <em>F</em> across ∂<em>C</em> is

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N \,\mathrm ds

where <em>N</em> is the <em>normal</em> vector to ∂<em>C</em>. While <em>T</em> = <em>x'(t)</em> <em>i</em> + <em>y'(t)</em> <em>j</em>, the normal vector is <em>N</em> = <em>y'(t)</em> <em>i</em> - <em>x'(t)</em> <em>j</em>.

• on the parabolic segment,

<em>N</em> = 2<em>t</em> <em>i</em> - <em>j</em>

• on the line segment,

<em>N</em> = - <em>i</em> + <em>j</em>

So the flux is

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(2t\,\mathbf i-\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i+\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (14t^4-5t^4)\,\mathrm dt - 2 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{\frac{17}{15}}

5 0
3 years ago
Other questions:
  • How many times can 26 go into 59
    8·1 answer
  • Jeffrey has a dog that weighs 3 times as much as Sarah's dog. The total weight of both dogs is 64 lb. How much does Jeffrey's Do
    12·1 answer
  • Geometry please help. What is the perimeter of XYZ
    10·1 answer
  • UHHhh helpppppppppppp &lt;3 c':
    9·1 answer
  • What is the value of y
    13·1 answer
  • What is the probability that a student chosen at random has a GPA less than 3.00?
    11·1 answer
  • PLS HELP I WILL GIVE BRAINLY THINGY
    15·1 answer
  • Which system of inequalities is shown?
    8·1 answer
  • You have decided to start saving for a college and open up a 529 account. You invest $5,000 into the account at a 3% interest ra
    8·1 answer
  • Alesha has $25. She spent $4 on lunch and $3 for a book everyday. How many days could Alesha use the money for?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!