I can only give possible combinations of the ages. This is because only the product is given. Had the sum of all ages been given, possible combinations would boil down into 1 combination.
3 kids with a youngest. This means that the ages are not the same.
We do prime factorization to get the age combination.
72 ÷ 2 = 36
36 ÷ 2 = 18
18 ÷ 2 = 9
9 ÷ 3 = 3
3 ÷ 3 = 1
1 x 2 x 2 x 2 x 3 x 3 = 72
Possible combination with no repeating number.
1 x 8 x 9 = 72
2 x 4 x 9 = 72
4 x 6 x 3 = 72
1 x 6 x 12 = 72
He spends 30 to enter and 4 per ride
y = 4x + 30....with x being the number of rides and y being the total cost
Answer:
x= to 5
Step-by-step explanation:
Answer:
48
Step-by-step explanation:
Answer:
y = 89 x = 123
Step-by-step explanation:
since they're both in standard form, its easier to do the process of elimination
x - y = 34
-x -y -212
------------------
-2y = -178
y = 89
now plug in y to any one of those two equations
x - y = 34
x - 89 = 34
x = 123
<em>to check:</em>
<em>x</em><em> </em><em>+</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>2</em><em>1</em><em>2</em>
<em>1</em><em>2</em><em>3</em><em> </em><em>+</em><em> </em><em>8</em><em>9</em><em> </em><em>=</em><em> </em><em>2</em><em>1</em><em>2</em>
<em>2</em><em>1</em><em>2</em><em> </em><em>=</em><em> </em><em>2</em><em>1</em><em>2</em>