In rectangle : US=RT
2SO=US
6x+4=14x-12
X=16/8
6(16/8)+4=your answer
First, we have
s1/r1 = s2/r2
The question also states the fact that
s/2πr = θ/360°
Rearranging the second equation, we have
s/r = 2πθ/360°
Then we substitute it to the first equation
s1/r1 = 2πθ1/360°
s2/r2 = 2πθ2/360°
which is now
2πθ1/360° = 2πθ2/360°
By equating both sides, 2π and 360° will be cancelled, therefore leaving
θ1 = θ2
Answer:
3
(
3
)
+
6
(
2
)
+
2
=
2
(
3
)
+
3
(
2
)
+
5
Step-by-step explanation:
Alrighty
squaer base so length=width, nice
v=lwh
but in this case, l=w, so replace l with w
V=w²h
and volume is 32000
32000=w²h
the amount of materials is the surface area
note that there is no top
so
SA=LW+2H(L+W)
L=W so
SA=W²+2H(2W)
SA=W²+4HW
alrighty
we gots
SA=W²+4HW and
32000=W²H
we want to minimize the square foottage
get rid of one of the variables
32000=W²H
solve for H
32000/W²=H
subsitute
SA=W²+4WH
SA=W²+4W(32000/W²)
SA=W²+128000/W
take derivitive to find the minimum
dSA/dW=2W-128000/W²
where does it equal 0?
0=2W-1280000/W²
128000/W²=2W
128000=2W³
64000=W³
40=W
so sub back
32000/W²=H
32000/(40)²=H
32000/(1600)=H
20=H
the box is 20cm height and the width and length are 40cm
Step-by-step explanation:
4x + 2xy=
4×4 + 2×4×-3
= 16 + (-24)
= - 8