Okay what is the question :)
A life coach (only a random answer sorry)
Using sum and difference identities from trigonometric identities shows that; Asin(ωt)cos(φ) +Acos(ωt)sin(φ) = Asin(ωt + φ)
<h3>How to prove Trigonometric Identities?</h3>
We know from sum and difference identities that;
sin (α + β) = sin(α)cos(β) + cos(α)sin(β)
sin (α - β) = sin(α)cos(β) - cos(α)sin(β)
c₂ = Acos(φ)
c₁ = Asin(φ)
The Pythagorean identity can be invoked to simplify the sum of squares:
c₁² + c₂² =
(Asin(φ))² + (Acos(φ))²
= A²(sin(φ)² +cos(φ)²)
= A² * 1
= A²
Using common factor as shown in the trigonometric identity above for Asin(ωt)cos(φ) +Acos(ωt)sin(φ) gives us; Asin(ωt + φ)
Complete Question is;
y(t) = distance of weight from equilibrium position
ω = Angular Frequency (measured in radians per second)
A = Amplitude
φ = Phase shift
c₂ = Acos(φ)
c₁ = Asin(φ)
Use the information above and the trigonometric identities to prove that
Asin(ωt + φ) = Asin(ωt)cos(φ) +Acos(ωt)sin(φ)
Read more about Trigonometric Identities at; brainly.com/question/7331447
#SPJ1
I believe it is false.
I think that electromagnetic radiation can occur in other forms such as rays. Rays and waves seem similar and are both apart of the electromagnetic spectrum, but they take different forms.
MRI scanner or other imaging device