So, f[x] = 1/4x^2 - 1/2Ln(x)
<span>thus f'[x] = 1/4*2x - 1/2*(1/x) = x/2 - 1/2x </span>
<span>thus f'[x]^2 = (x^2)/4 - 2*(x/2)*(1/2x) + 1/(4x^2) = (x^2)/4 - 1/2 + 1/(4x^2) </span>
<span>thus f'[x]^2 + 1 = (x^2)/4 + 1/2 + 1/(4x^2) = (x/2 + 1/2x)^2 </span>
<span>thus Sqrt[...] = (x/2 + 1/2x) </span>
Answer:
╲┏━┳━━━━━━━━┓╲╲
╲┃◯┃╭┻┻╮╭┻┻╮┃╲╲
╲┃╮┃┃╭╮┃┃╭╮┃┃╲╲
╲┃╯┃┗┻┻┛┗┻┻┻┻╮╲
╲┃◯┃╭╮╰╯┏━━━┳╯╲
╲┃╭┃╰┏┳┳┳┳┓◯┃╲╲
do u like it
Step-by-step explanation:
Answer:
7w<u> > </u>5w + 50
Step-by-step explanation:
Answer:
x = 88
Step-by-step explanation:
These angles are same side exterior angles, and when the lines are parallel, same side exterior angles are supplementary
x + 92 =180
Subtract 92 from each side
x+92-92=180-92
x =88