It took him 0.5 hrs to zoom over to Fat James’s house
Answer:
Approximately 75%.
Explanation:
Look up the relative atomic mass of Ca on a modern periodic table:
There are one mole of Ca atoms in each mole of CaCO₃ formula unit.
- The mass of one mole of CaCO₃ is the same as the molar mass of this compound:
. - The mass of one mole of Ca atoms is (numerically) the same as the relative atomic mass of this element:
.
Calculate the mass ratio of Ca in a pure sample of CaCO₃:
.
Let the mass of the sample be 100 g. This sample of CaCO₃ contains 30% Ca by mass. In that 100 grams of this sample, there would be
of Ca atoms. Assuming that the impurity does not contain any Ca. In other words, all these Ca atoms belong to CaCO₃. Apply the ratio
:
.
In other words, by these assumptions, 100 grams of this sample would contain 75 grams of CaCO₃. The percentage mass of CaCO₃ in this sample would thus be equal to:
.
<span>Thermal energy is the energy that comes from heat. This heat is generated by the movement of tiny particles within an object. The faster these particles move, the more heat is generated.</span>
<span>Heat energy is the result of the movement of tiny particles called atoms, molecules or ions in solids, liquids and gases. Heat energy can be transferred from one object to another, and the transfer or flow due to the difference in temperature between the two objects is called heat.</span>
<span>The kinetic temperature is the variable needed for subjects like heat transfer, because it is the translational kinetic energy which leads to energy transfer from a hot area (larger kinetic temperature, higher molecular speeds) to a cold area (lower molecular speeds) in direct collisional transfer.</span>
Mixtures to pure substances: separation processes
<span>Pure substances to mixtures: mixing </span>
<span>Both are physical changes, since most of those processes do not require chemical changes in the separation processes.</span>