Answer:
-2755
Step-by-step explanation:
I've attached the complete question.
Answer:
Only participant 1 is not cheating while the rest are cheating.
Because only participant 1 has a z-score that falls within the 95% confidence interval.
Step-by-step explanation:
We are given;
Mean; μ = 3.3
Standard deviation; s = 1
Participant 1: X = 4
Participant 2: X = 6
Participant 3: X = 7
Participant 4: X = 0
Z - score for participant 1:
z = (x - μ)/s
z = (4 - 3.3)/1
z = 0.7
Z-score for participant 2;
z = (6 - 3.3)/1
z = 2.7
Z-score for participant 3;
z = (7 - 3.3)/1
z = 3.7
Z-score for participant 4;
z = (0 - 3.3)/1
z = -3.3
Now from tables, the z-score value for confidence interval of 95% is between -1.96 and 1.96
Now, from all the participants z-score only participant 1 has a z-score that falls within the 95% confidence interval.
Thus, only participant 1 is not cheating while the rest are cheating.
Answer:
∡RST
∡S
∡TSR
∡4
this appears to be an obtuse angle
Step-by-step explanation:
∡RST
∡S
∡TSR
∡4
this appears to be an obtuse angle
Answer:
56x + 8
Step-by-step explanation:
We can write the function in terms of y rather than h(x)
so that:
y = 3 (5)^x
A. The rate of change is simply calculated as:
r = (y2 – y1) / (x2 – x1) where r stands for rate
Section A:
rA = [3 (5)^1 – 3 (5)^0] / (1 – 0)
rA = 12
Section B:
rB = [3 (5)^3 – 3 (5)^2] / (3 – 2)
rB = 300
B. We take the ratio of rB / rA:
rB/rA = 300 / 12
rB/rA = 25
So we see that the rate of change of section B is 25
times greater than A