You do £68.85 - £15.30= (the answer)
Then you do the answer of that divided by 0.85
That’s the answer because I couldn’t type it out! Hope it helped!
<h3><u>
Answer</u>
:</h3>
We know that,


<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u>
<u>Now, Let's solve</u> !






The question is:
Check whether the function:
y = [cos(2x)]/x
is a solution of
xy' + y = -2sin(2x)
with the initial condition y(π/4) = 0
Answer:
To check if the function y = [cos(2x)]/x is a solution of the differential equation xy' + y = -2sin(2x), we need to substitute the value of y and the value of the derivative of y on the left hand side of the differential equation and see if we obtain the right hand side of the equation.
Let us do that.
y = [cos(2x)]/x
y' = (-1/x²) [cos(2x)] - (2/x) [sin(2x)]
Now,
xy' + y = x{(-1/x²) [cos(2x)] - (2/x) [sin(2x)]} + ([cos(2x)]/x
= (-1/x)cos(2x) - 2sin(2x) + (1/x)cos(2x)
= -2sin(2x)
Which is the right hand side of the differential equation.
Hence, y is a solution to the differential equation.