You must drive more than 40 miles to make option A the cheaper plan
<em><u>Solution:</u></em>
Two payment options to rent a car
Let "x" be the number of miles driven in one day
<em><u>You can pay $20 a day plus 25¢ a mile (Option A)</u></em>
25 cents is equal to 0.25 dollars
OPTION A : 20 + 0.25x
<em><u>You pay $10 a day plus 50¢ a mile (Option B)</u></em>
50 cents equal to 0.50 dollars
Option B: 10 + 0.50x
<em><u>For what amount of daily miles will option A be the cheaper plan ?</u></em>
For option A to be cheaper, Option A must be less than option B
Option A < Option B

Solve the inequality
Add -0.50x on both sides

Add - 20 on both sides,



Divide both sides by 0.25

Thus you must drive more than 40 miles to make option A the cheaper plan
Answer:
The condition for r is the following:

And for this case if we analyze the options the only impossible value is given by:
1.0528
Because this value is higher than 1 and not satisfy the general limits for r
Step-by-step explanation:
The correlation coefficient is a measure of dispersion and is a value between -1 and 1, and is defined as:
The condition for r is the following:

And for this case if we analyze the options the only impossible value is given by:
1.0528
Because this value is higher than 1 and not satisfy the general limits for r
Answer:
Option D (r(t) = 3.50t +25
; r(8) = 53)
Step-by-step explanation:
The fixed cost to rent the kayak $25. This is the cost which remains fixed irrespective of the usage of the kayak. The variable cost of using the kayak is the cost which depends on the usage of the kayak. It is mentioned that the kayak is used for 4 hours and the company charges $3.5 for every half hour. The cost function is given by:
r(t) = 25 + 3.5t ; there r is the total cost of using the kayak and t is the number of half-hours the kayak is used.
4 hours means that there are 8 half-hours. Therefore, t=8. Put t=8 in r(t).
r(8) = 25 + 3.5*(8) = 25 + 28 = 53.
Therefore, Option D is the correct answer!!!