Here's how to rewrite cos^4x tan^2x in the first power of cosine.
See the attached image.
First step, find the trigonometric identity of tan^2x.
Then simply everything until you only get cos x.
Remove all the exponents. Simplify.
Answer:
4.75% probability that the line pressure will exceed 1000 kPa during any measurement
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that the line pressure will exceed 1000 kPa during any measurement
This is 1 subtracted by the pvalue of Z when X = 1000. So



has a pvalue of 0.9525
1 - 0.9525 = 0.0475
4.75% probability that the line pressure will exceed 1000 kPa during any measurement
Answer:
Perimeter = 17a
Area = 30 square meters
Step-by-step explanation:
Perimeter = 2b + 8 = 10b + 5 + a = 15ab + 2a - b = 17a
Area = 2 + 8 = 10 + 2 = 12 × 5 = 60 simplify
I honestly don't know if this is correct, I hope it is
Given the figure of a regular pyramid
The base of the pyramid is a hexagon with a side length = 6
The lateral area is 6 times the area of one of the side triangles
So, the side triangle has a base = 6
The height will be:
![\begin{gathered} h^2=6^2+(\frac{\sqrt[]{3}}{2}\cdot6)^2=36+27=63 \\ h=\sqrt[]{63} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20h%5E2%3D6%5E2%2B%28%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%5Ccdot6%29%5E2%3D36%2B27%3D63%20%5C%5C%20h%3D%5Csqrt%5B%5D%7B63%7D%20%5Cend%7Bgathered%7D)
so, the lateral area =