Equivalent equations are equations that have the same value
The equation in logarithmic form is 
<h3>How to rewrite the equation</h3>
The expression is given as:

Take the logarithm of both sides

Apply the power rule of logarithm

Divide both sides by log(10)

Apply change of base rule

Divide both sides by 2

Rewrite as:

Hence, the equation in logarithmic form is 
Read more about logarithms at:
brainly.com/question/25710806