1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
2 years ago
14

Help help help help plssssss

Mathematics
1 answer:
dolphi86 [110]2 years ago
4 0

Answer:

{ \tt{x + (x + 6) + 114 = 360}} \\ { \tt{ \blue{sum \: of \: exterior \: angles \: is \: 360 \degree}}} \\ { \tt{2x + 120 = 360}} \\ { \tt{2x = 240}} \\ { \tt{x = 120}}

Angles are 120°, 126°, and 114°

You might be interested in
Last Sunday 1,757 people visited the amusement park.56% of the visitors were adults,16%were teenagers, and 28% were children age
Sveta_85 [38]

Answer:

  • 984 adults
  • 281 teens
  • 492 children

Step-by-step explanation:

Multiply the total by the corresponding percentage to find the number. We assume the percentages have been rounded, so some adjustment is needed in the result of the multiplication.

{adults, teens, children} = 1757 × {.56, .16, .28} = {983.92, 281.12, 491.96}

  ≈ {984, 281, 492}

The visitors included 984 adults, 281 teens, and 492 children.

5 0
3 years ago
A grocery store chain has been tracking data on the number of shoppers that use coupons. The data shows that 71% of all shoppers
Evgesh-ka [11]
<span>Confidence Interval = (p-E, p+E) = (0.71-0.025, 0.71+0.025) = (0.685, 0.735) </span>
4 0
3 years ago
HELP ME ASAP HELP ME ASAP HELP ME ASAP
Anon25 [30]

Answer:

First, plot the y-intercept. The y-intercept is 1, so plot the point (0,1).

Then go up 2 points and to the right 3 points and plot a point there. (3,3)

We go to the right because the slope is positive.

Draw a line through the two points.

Step-by-step explanation:

y = mx+b

m = slope

b = y-intercept

8 0
3 years ago
Pick a uniformly chosen random point inside a unit square (a square of sidelength 1) and draw a circle of radius 1/3 around the
Tresset [83]

Answer:

the probability is 4/9 (44,44%)

Step-by-step explanation:

Assuming that each point inside the square is equally probable, then the probability is uniformly distributed in area of the square. Thus

probability = area where condition is true / total area of the square

for a circle of radius 1/3  inside the square ,the area where this condition is satisfied is a square with sides 1-1/3 = 2/3 , thus

probability = (2/3)²/1² = 4/9

thus the probability is 4/9 (44,44%)

3 0
3 years ago
Please help! Related to limits! 100 points!
creativ13 [48]

Answer:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

General Formulas and Concepts:
<u>Pre-Calculus</u>

2x2 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc

3x3 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Limit Property [Multiplied Constant]:
\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Derivatives

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.

<u />

<u>Step 1: Define</u>

<em>Identify given.</em>

<em />\displaystyle \Delta (x) = \left| \begin{array}{ccc} \tan x & \tan (x + h) & \tan (x + 2h) \\ \tan (x + 2h) & \tan x & \tan (x + h) \\ \tan (x + h) & \tan (x + 2h) & \tan x \end{array} \right|

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2}

<u>Step 2: Find Limit Pt. 1</u>

  1. [Function] Simplify [3x3 and 2x2 Matrix Determinant]:
    \displaystyle \Delta (x) = \tan^3 (2h + x) + \tan^3 (h + x) + \tan^3 x - 3 \tan x \tan (h + x) \tan (2h + x)
  2. [Function] Substitute in <em>x</em>:
    \displaystyle \Delta \bigg( \frac{\pi}{3} \bigg) = \tan^3 \bigg( 2h+  \frac{\pi}{3} \bigg) + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) + 3\sqrt{3} - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h+  \frac{\pi}{3} \bigg)

<u>Step 3: Find Limit Pt. 2</u>

  1. [Limit] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \lim_{h \to 0} \frac{\Delta (\frac{\pi}{3})}{h^2}
  2. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \bigg( \frac{0}{0} \bigg)

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":

\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]

\displaystyle \frac{d}{dh} h^2 = 2h

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:

\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]

\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle \frac{d^2}{dh^2} h^2 = 2

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

∴ we have <em>evaluated</em> the given limit.

---

Learn more about limits: brainly.com/question/27438198

---

3 0
2 years ago
Other questions:
  • How do I write c. Using if and then
    5·1 answer
  • How do you write 604 in expanded form
    8·2 answers
  • A new commercial oven is worth $24,000 when you buy it. The oven depreciates in 12 years. You pay $5,000 down, get $5,000 for tr
    14·2 answers
  • What is the value of x? 24, 26, 12, x . A) 8 b) 12 c) 6 d) 2
    7·1 answer
  • You gave away 2⁄5 of your stamp collection. How many fifteenths is that?
    15·1 answer
  • How do you find volume?
    9·2 answers
  • A neighborhood in Shiloh is building a treehouse. It has a rectangle floor of 6 ft by 4 ft. What is the area of the tree house f
    5·1 answer
  • The problem of the Week!
    15·1 answer
  • How is the series 6 + 11 + 16 + ... + 81 represented in summation notation?
    12·1 answer
  • Which graph represents an exponential function
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!