Step-by-step explanation:
the second table
......................
Answer:
to my knowledge i believe it is 24/3
Step-by-step explanation:
The answer would be 6 bins.
Explanation:
Julio has a total of 48 comic books and he is able to fit 8 in one bin.
Therefore 48 divided by 8 is 6. Also 8 x 6 = 48
Answer:
x=7 and m<LMN = 120
Step-by-step explanation:
if MO bisects LMN then 13x - 31 must be equal to x + 53
13x - x = 53 + 31
12x = 84
x = 7
and
13x - 31 + x + 53 = m<LMN
14x + 22 = m<LMN
since x is 7
14×7 + 22 = 120
Answer:
The answer is 
Step-by-step explanation:
To calculate the volumen of the solid we solve the next double integral:

Solving:

![[6x^{2} ]{{1} \atop {0}} \right. * [\frac{y^{3}}{3}]{{1} \atop {0}} \right.](https://tex.z-dn.net/?f=%5B6x%5E%7B2%7D%20%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%2A%20%5B%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

The plane y=mx divides this volume in two equal parts. So volume of one part is 1.
Since m > 1, hence mx ≤ y ≤ 1, 0 ≤ x ≤ 
Solving the double integral with these new limits we have:

This part is a little bit tricky so let's solve the integral first for dy:
![\int\limits^\frac{1}{m}_0 [{12x \frac{y^{3}}{3}}]{{1} \atop {mx}} \right.\, dx =\int\limits^\frac{1}{m}_0 [{4x y^{3 }]{{1} \atop {mx}} \right.\, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B12x%20%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx%20%3D%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B4x%20y%5E%7B3%20%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx)
Replacing the limits:

Solving now for dx:
![[{\frac{4x^{2}}{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right. = [{2x^{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right.](https://tex.z-dn.net/?f=%5B%7B%5Cfrac%7B4x%5E%7B2%7D%7D%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%3D%20%5B%7B2x%5E%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

As I mentioned before, this volume is equal to 1, hence:
