Explanation:
If water did not expand when freezing, then it would be denser than liquid water when it froze; therefore it would sink and fill lakes or the ocean from bottom to top. Once the oceans filled with ice, life there would not be possible.
The DNA polymerases are enzymes that create DNA molecules by assembling nucleotides, the building blocks of DNA. These enzymes are essential to DNA replication and usually work in pairs to create two identical DNA strands from one original DNA molecule. During this process, DNA polymerase “reads” the existing DNA strands to create two new strands that match the existing ones.
Every time a cell divides, DNA polymerase is required to help duplicate the cell’s DNA, so that a copy of the original DNA molecule can be passed to each of the daughter cells. In this way, genetic information is transmitted from generation to generation.
Before replication can take place, an enzyme called helicase unwinds the DNA molecule from its tightly woven form. This opens up or “unzips” the double stranded DNA to give two single strands of DNA that can be used as templates for replication.
DNA polymerase adds new free nucleotides to the 3’ end of the newly-forming strand, elongating it in a 5’ to 3’ direction. However, DNA polymerase cannot begin the formation of this new chain on its own and can only add nucleotides to a pre-existing 3'-OH group. A primer is therefore needed, at which nucleotides can be added. Primers are usually composed of RNA and DNA bases and the first two bases are always RNA. These primers are made by another enzyme called primase.
Although the function of DNA polymerase is highly accurate, a mistake is made for about one in every billion base pairs copied. The DNA is therefore “proofread” by DNA polymerase after it has been copied so that misplaced base pairs can be corrected. This preserves the integrity of the original DNA strand that is passed onto the daughter cells.

A surface representation of human DNA polymerase β (Pol β), a central enzyme in the base excision repair (BER) pathway. Image Credit: niehs.nih.gov
Structure of DNA polymerase
The structure of DNA polymerase is highly conserved, meaning their catalytic subunits vary very little from one species to another, irrespective of how their domains are structured. This highly conserved structure usually indicates that the cellular functions they perform are crucial and irreplaceable and therefore require rigid maintenance to ensure their evolutionary advantage.
Answer:
This organism belongs to Kingdom Fungi.
Explanation:
- Fungi are heterotrophic, spore bearing Eukaryotes.
- Most of the fungi are multicellular.
- Their cells have a cell wall mainly composed of Glucagon and chitin.
- These are saprotrophic and lack a chloroplasts.
- They store food as glycogen which is similar to storage product in animals.
- The Kingdom fungi is divided into four major division on the basis of sexual reproduction ; chydridomycota, zygomycota, ascomycota and basidiomycota.
- Many fungi show no sexual stage and are grouped as imperfect fungi or deuteromycetes.
- The study of fungi is called Mycology.
The answer is the third option. she could still get hypertension if she becomes a heavy smoker because of the chemicals in tobacco can cause your artery walls to narrow increasing blood pressure