1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
3 years ago
13

Equivalent Expressions for 6(4t+5)+2

Mathematics
1 answer:
Radda [10]3 years ago
8 0

Answer:

48t + 60

Step-by-step explanation:

hope this helps!!

You might be interested in
the graph of a line has a slope of -2/3 and a y intercept of (0,2). rewrite the equation in standard for (Ax+By=C) with a positi
sergiy2304 [10]

Answer:

2x + 3y = 6

Step-by-step explanation:

obtain the equation in slope- intercept form

y = mx + c ( m is the slope and c the y-intercept )

here m = - \frac{2}{3} and c = 2

y = - \frac{2}{3} x + 2 ← in slope-intercept form

multiply all terms by 3 to eliminate the fraction

3y = - 2x + 6 ( add 2x to both sides )

2x + 3y = 6 ← in standard form


8 0
3 years ago
Sea un cuadrado de 2 pulgadas de lado uniendo los puntos medios se obtiene otro cuadrado inscrito en el anterior si repetimos es
Ne4ueva [31]

Answer:

1) La serie geométrica formada es

4, 2, 1,..., ∞

2) La suma al infinito de las áreas de los cuadrados es 8 in.²

Step-by-step explanation:

1) El área del primer cuadrado, a₁ = 2² = 4 pulgadas²

El área del siguiente cuadrado, a₂ = (√ (1² + 1²)) ² = (√2) ² = 2 pulg²

El área del siguiente cuadrado, a₃ = ((√ (2) / 2) ² + (√ (2) / 2) ²) = 1 pulg²

Por lo tanto, la razón común, r = a₂ / a₁ = 2/4 = a₃ / a₂ = 1/2

Las áreas de los cuadrados progresivos forman una progresión geométrica como sigue;

4, 4×(1/2), 4 ×(1/2)²,...,4×(1/2)^{\infty}

De donde obtenemos la serie geométrica formada de la siguiente manera;

4, 2, 1,..., ∞

2) La suma de 'n' términos de una progresión geométrica hasta el infinito para -1 <r <1 se da como sigue;

S_{\infty} = \dfrac{a}{1 - r}

Por lo tanto, la suma de las áreas de los cuadrados hasta el infinito se obtiene sustituyendo los valores de 'a' y 'r' en la ecuación anterior de la siguiente manera;

La \ suma \ al \ infinito \ del \ cuadrado \ S_{\infty}  = \dfrac{4 \ in.^2}{1 - \dfrac{1}{2} } = \dfrac{4 \ in.^2}{\left(\dfrac{1}{2} \right)} = 2 \times 4 \ in.^2= 8 \ in.^2

La suma al infinito de las áreas de los cuadrados, S_{\infty} = 8 in.²

7 0
3 years ago
A city planner designs a park that is a quadrilateral with vertices at J(-3,1), K(1,3), L(5,-1), and M(-1,-3). There is an entra
Ksivusya [100]
The Quadrilateral is JKLM, 

let M_{JK}, M_{KL}, M_{LM}, M_{JM}, be the midpoints of JK, KL, LM and JM respectively.

---------------------------------------------------------------------------------------------------------

Given any 2 point P(m,n) and Q(k,l),<span>

the coordinates of the midpoint of the line segment PQ are given by the formula:

M_{PQ}=( \frac{m+k}{2} ,&#10;\frac{n+l}{2}), </span>

-------------------------------------------------------------------------------------------------

thus the coordinates of points M_{JK}, M_{KL}, M_{LM}, M_{JM},

are as follows:

M_{JK}= (\frac{-3+1}{2}, \frac{1+3}{2})=(-1,2), \\\\M_{KL}= (\frac{1+5}{2}, \frac{3-1}{2}=(3,1), \\\\M_{LM}= (\frac{5-1}{2}, \frac{-1-3}{2})=(2, -2),\\\\ M_{JM}= (\frac{-3-1}{2}, \frac{1-3}{2})=(-2,-1)


------------------------------------------------------------------------------------------------

The distance between any 2 points P(a,b) and Q(c,d) in the coordinate plane, is given by the formula:<span>

 |PQ|= \sqrt{ (a-c)^{2} + (b-d)^{2}&#10;}</span>

------------------------------------------------------------------------------------------------

thus the distances connecting the opposite entrances can be calculated as follows:


|M_{JK},M_{LM}|= \sqrt{ (-1-2)^{2} + (2-(-2))^{2} }= \sqrt{9+16}=5

|M_{KL}M_{JM}|= \sqrt{ (3-(-2))^{2} + (1-(-1))^{2}}= \sqrt{25+4}= \sqrt{29}=5.39


Thus the total distance of the paths joining the opposite entrances is 

5+5.39 units = 50 m + 53.9 m = 104 m (rounded to the nearest meter)


Answer: 104 m



8 0
3 years ago
How can you use properties to solve equations with variables on both sides
bija089 [108]
You can use properties to solve equations with variables on both side by simplifying get the variable on one side. solve using inverse operations then check to see if it fits in right .
5 0
3 years ago
The line which passes through -2,5 and 6,8​
babunello [35]

Answer:

y=(3/8)x+5.75

Step-by-step explanation:

y=mx+b

m=slope

b=y-intercept

m=(8-5)/(6+2)=3/8

y=mx+b

5=3/8(-2)+b

5=-3/4+b

b=5.75

y=mx+b

y=(3/8)x+5.75

3 0
3 years ago
Other questions:
  • Jen picked three fourth in half an hour if she keeps the same rate how many will she pick in 2 hours
    8·1 answer
  • Show 63 tens in another way
    5·1 answer
  • F(x)=x2-2x find f(x2)
    6·2 answers
  • Write this decimal in numbers , Fifty-one thousandths​
    11·2 answers
  • Find the length of the hypotenuse left
    9·1 answer
  • The quantity of four minus one all raised to the five-minus- two power
    13·2 answers
  • The sum of 2 nubers ,one of which is two third of the other,is 45.Find the smaller number​
    12·1 answer
  • What is the value of x in the equation shown? 2(X + 8) - 4x = 10x + 4
    8·1 answer
  • Hi, need help on this, will give a thanks and 5 stars if correct, thank you!
    15·1 answer
  • Carpenter Charlie charges $15 per hour plus a flat rate of $100. Carpenter Chris charges $20 per hour plus a flat rate of $50. F
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!