1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
2 years ago
5

Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, part

icle Q, moves along the x-axis so that its position at time t is given by x(t)=sin(πt)2−t for all times t≠2.
As time t approaches 2, what is the limit of the position of particle Q ? Show the work that leads to your answer.
Show that the velocity of particle Q is given by vQ(t)=2πcos(πt)−πtcos(πt)+sin(πt)(2−t)2 for all times t≠2.
Find the rate of change of the distance between particle P and particle Q at time t=12. Show the work that leads to your answer.
Mathematics
1 answer:
sergey [27]2 years ago
3 0

a) The limit of the position of particle Q when time approaches 2 is -\pi.

b) The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2.

c) The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}.

<h3>How to apply limits and derivatives to the study of particle motion</h3>

a) To determine the limit for t = 2, we need to apply the following two <em>algebraic</em> substitutions:

u = \pi t (1)

k = 2\pi - u (2)

Then, the limit is written as follows:

x(t) =  \lim_{t \to 2} \frac{\sin \pi t}{2-t}

x(t) =  \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}

x(u) =  \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}

x(k) =  \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}

x(k) =  -\pi\cdot  \lim_{k \to 0} \frac{\sin k}{k}

x(k) = -\pi

The limit of the position of particle Q when time approaches 2 is -\pi. \blacksquare

b) The function velocity of particle Q is determined by the <em>derivative</em> formula for the division between two functions, that is:

v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}} (3)

Where:

  • f(t) - Function numerator.
  • g(t) - Function denominator.
  • f'(t) - First derivative of the function numerator.
  • g'(x) - First derivative of the function denominator.

If we know that f(t) = \sin \pi t, g(t) = 2 - t, f'(t) = \pi \cdot \cos \pi t and g'(x) = -1, then the function velocity of the particle is:

v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}

v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}

The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2. \blacksquare

c) The vector <em>rate of change</em> of the distance between particle P and particle Q (\dot r_{Q/P} (t)) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:

\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t) (4)

Where \vec v_{P}(t) is the vector <em>velocity</em> of particle P.

If we know that \vec v_{P}(t) = (0, 4), \vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right) and t = \frac{1}{2}, then the vector rate of change of the distance between the two particles:

\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)

\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)

\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)

The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:

|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}

|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}

The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}. \blacksquare

<h3>Remark</h3>

The statement is incomplete and poorly formatted. Correct form is shown below:

<em>Particle </em>P<em> moves along the y-axis so that its position at time </em>t<em> is given by </em>y(t) = 4\cdot t - 23<em> for all times </em>t<em>. A second particle, </em>Q<em>, moves along the x-axis so that its position at time </em>t<em> is given by </em>x(t) = \frac{\sin \pi t}{2-t}<em> for all times </em>t \ne 2<em>. </em>

<em />

<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>Q?<em> Show the work that leads to your answer. </em>

<em />

<em>b) </em><em>Show that the velocity of particle </em>Q<em> is given by </em>v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}<em>.</em>

<em />

<em>c)</em><em> Find the rate of change of the distance between particle </em>P<em> and particle </em>Q<em> at time </em>t = \frac{1}{2}<em>. Show the work that leads to your answer.</em>

To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760

You might be interested in
Monroe Reservoir, it cost $25 per hour plus $100 deposit to rent a pontoon boat. a. Write an equation that describes the cost c,
makkiz [27]
C = 25h + 100 ......renting for 2 hrs...sub in 2 for h
c = 25(2) + 100
c = 50 + 100
c = 150 <===

if u spend 325...so sub in 325 for c
325 = 25h + 100
325 - 100 = 25h
225 = 25h
225/25 = h
9 = h <=== it was rented for 9 hrs
5 0
3 years ago
Read 2 more answers
If KM = NO and NO = PQ, then KM = PQ.
uysha [10]
The answer is D. <span>transitive property (algebra lesson)
</span>
4 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B4%7D%20%20-%206%20%7Bx%7D%5E%7B3%7D%20%20%2B%2022%20%7Bx%7D%5E%7B2%7D%20%20-%2
alexira [117]

Answer:

x = 2, 1 + 3i, 1 − 3i

Step-by-step explanation:

Find the Roots (Zeros)

x^4 − 6x^3 + 22x^2 − 48x + 40

Set x^4 − 6x^3 + 22x^2 − 48x + 40 equal to 0. x^4 − 6x^3 + 22x^2 − 48x + 40 = 0

Solve for x.

Factor the left side of the equation.

Factor x^4 − 6x^3 + 22x^2 − 48x + 40 using the rational roots test.

(x − 2) (x^3 − 4x^2 + 14x − 20) = 0

 Factor x^3 − 4x^2 + 14x − 20 using the rational roots test.

(x − 2) (x − 2) (x2 − 2x + 10) = 0

 Combine like factors.

(x − 2)2 (x^2 − 2x + 10) = 0

If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.

(x − 2)^2 = 0

x^2 − 2x + 10 = 0

 Set (x − 2)^2 equal to 0 and solve for x.

Set (x − 2)^2 equal to 0.

 (x − 2)^2 = 0

Solve (x − 2)^2 = 0 for x.

x = 2

 Set x^2 − 2x + 10 equal to 0 and solve for x.

Set x^2 − 2x + 10 equal to 0. x^2 − 2x + 10 = 0

Solve x^2 − 2x + 10 = 0 for x.

Use the quadratic formula to find the solutions.

−b ± (√b^2 − 4 (ac) )/2a

Substitute the values a = 1, b = −2, and c = 10 into the quadratic formula and solve for x.

2 ± (√(−2)^2 − 4 ⋅ (1 ⋅ 10))/2 ⋅ 1

Simplify.

Simplify the numerator.

  x =    2 ± 6i/ 2.1

Multiply 2 by 1

 x =  2 ± 6i/2⋅1

 Simplify

  2 ± 6i/2  

   x = 1 ± 3i

The final answer is the combination of both solutions.

x = 1 + 3i, 1 − 3i

The final solution is all the values that make (x − 2)2 (x2 − 2x + 10) = 0 true.

x = 2, 1 + 3i, 1 − 3i

3 0
3 years ago
PLEEEEASE HELP ME!!
mixer [17]

Answer:

umm km / nk

Step-by-step explanation:

I DONT know if this is right...…can u  plz mark me brainiest? I really need it!!!!

7 0
3 years ago
Read 2 more answers
Can you please help meeeeeeee
Ahat [919]
The outlier would be 68
4 0
2 years ago
Other questions:
  • Please help I don't know how to do this!
    13·1 answer
  • 3(x^2+2x-3)-4(4x^2-7x+5) is equivalent to
    6·1 answer
  • Kelly spent $20 on rides and snacks at the state fair if X is that amount she spit on rides and y is the amount she spent on sna
    8·1 answer
  • Could you sub to me to help me out? It’s Vizion Ryze. I have 137 subs right now.
    8·1 answer
  • The original price of a shirt at Walmart is $25. It goes on sale for $20. What is the
    6·1 answer
  • How do i find the least common denominator of 3/8 and 5/6?<br><br>No links please.​
    15·1 answer
  • I really need help me <br>find A×B when<br>​
    12·1 answer
  • Find "both" answers
    8·1 answer
  • The interquartile range gives the range of the middle_____% of the data​
    10·1 answer
  • What is the actual distance from the library to the grocery store?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!