Answer:
![6z^{4}](https://tex.z-dn.net/?f=6z%5E%7B4%7D)
Step-by-step explanation:
Given in the question an expression,
![\frac{ (2z^5)(12z^3)}{4z^4}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%282z%5E5%29%2812z%5E3%29%7D%7B4z%5E4%7D)
Step 1
Apply exponential "product rule"
![x^{m}x^{n}=x^{m+n}](https://tex.z-dn.net/?f=x%5E%7Bm%7Dx%5E%7Bn%7D%3Dx%5E%7Bm%2Bn%7D)
![\frac{ 12(2)z^5)(z^3)}{4z^4}](https://tex.z-dn.net/?f=%5Cfrac%7B%2012%282%29z%5E5%29%28z%5E3%29%7D%7B4z%5E4%7D)
![\frac{ (24)z^5)(z^3)}{4z^4}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%2824%29z%5E5%29%28z%5E3%29%7D%7B4z%5E4%7D)
![\frac{ 24(z^{(5+3)})}{4z^4}](https://tex.z-dn.net/?f=%5Cfrac%7B%2024%28z%5E%7B%285%2B3%29%7D%29%7D%7B4z%5E4%7D)
![\frac{ 24(z^{8})}{4z^4}](https://tex.z-dn.net/?f=%5Cfrac%7B%2024%28z%5E%7B8%7D%29%7D%7B4z%5E4%7D)
Step 2
Apply exponential " divide rule"
![\frac{x^{m}}{x^{n}}=x^{m-n}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7Bm%7D%7D%7Bx%5E%7Bn%7D%7D%3Dx%5E%7Bm-n%7D)
![\frac{24/4(z^{8})}{z^4}](https://tex.z-dn.net/?f=%5Cfrac%7B24%2F4%28z%5E%7B8%7D%29%7D%7Bz%5E4%7D)
![\frac{6(z^{8})}{z^4}](https://tex.z-dn.net/?f=%5Cfrac%7B6%28z%5E%7B8%7D%29%7D%7Bz%5E4%7D)
![\frac{6(z^{8-4})}{1}](https://tex.z-dn.net/?f=%5Cfrac%7B6%28z%5E%7B8-4%7D%29%7D%7B1%7D)
I believe its 21 sorry if im wrong
Answer:
13
Step-by-step explanation:
The range of a data set is the difference between the greatest and least values in the set. In this case, the greatest value is 15 and the least value is 2 so the range is 15 - 2 = 13.
The zero of a function is any replacement for the variable that will produce an answer of zero. Graphically, the real zero of a function is where the graph of the function crosses the x‐axis; that is, the real zero of a function is the x‐intercept(s) of the graph of the function.
Answer:
Is it 72?
Step-by-step explanation: