Answer:
Suppose we add up alternate Fibonacci numbers, Fn-1 + Fn+1; that is, what do ... L(1)=1 and L(3)= 4 so their sum is 5 whereas F(2)=1; L(2)=3 and L(4)= 7 so their ... What is the relationship between F(n-2), and F(n+2)? You should be able to find a ... Fib(N); K (an EVEN number!), Lucas(K) and Fib(K) in each expression like ...
Explanation:
<em><u>PLATO ANSWER:</u></em><em> </em>A and C
Hope this helps, have a amazing day!
Answer:
<em>The correct option is C) A mouse and a human have about the same number of genes.</em>
Explanation:
The technique of genetic sequencing has enable us to learn and compare thee genomes of different organisms. Genome sequencing proves that the genome of the humans and mice are about 99 percent similar. The number of genes in the mouse genome and the genome of humans is almost equal.
Other options, like option A, cannot be true because many complex organisms have fewer chromosomes than other organisms. For example, there are many simple plants which have more number of chromosomes than the complex humans.
Answer:
transcription factors bind to the promoter, and RNA polymerase is then recruited to begin transcribing the gene
Explanation:
The transcription process in eukaryotes happens in 3 stages:
- Initiation
- Elongation
- Termination
The initiation of transcription starts when a set of proteins called the transcription binds to the promoter region of a gene on the coding strand of DNA. Thereafter, the RNA polymerase enzyme binds to the promoter region thereby opening up the double helix structure of the DNA in anticipation of transcription.
During elongation, RNA nucleotides are added to the growing RNA strand in 5' to 3' direction with the DNA unwinding and winding back as the polymerase moves along the coding strand in 3' to 5' direction.
Transcription terminates when the RNA polymerase gets to the end of the gene being transcribed signalled by a sequence of DNA known as the terminator.
<em>Hence, in the illustration, the correct answer would be that the transcription factors bind to the promoter, and RNA polymerase is then recruited to begin transcribing the gene.</em>