By using universal terms and anatomical position when identifying human body parts, there is very little room for error or confusion as to which part you are referring.
Answer:
a. Paper chromatography would separate the pigments into several bands that appear green or yellow/orange.
Explanation:
The primary or main pigment in plants is the chlorophyll. The chlorophyll gives plants their characteristics green colour and helps in the absorption of light during photosynthesis.
Other pigments in plants include carotenoid with its characteristic yellow, red or orange colour; anthocyanin with its re/blue colour and betalains with its red/yellow colour.
<em>Hence, if pigments from a particular species of plant are extracted and subjected to paper chromatography, one would expect the pigments to be separated into several colour bands ranging from green to yellow/orange.</em>
The correct option is a.
Answer:
The correct answer is : C .It will decrease ATP production because fewer protons will be able flow down through ATP synthase.
Explanation:
- Oxidative Phosphorylation is a process which involves two steps:
- Transport of electrons from the reduced compounds like NADH (Nicotinamide adenine dinucleotide hydrogen) and FADH₂ (Flavin adenine dinucleotide dihydrogen) through the electron transport complexes, located in the inner mitochondrial membrane, to oxygen for the generation of water molecules.
- Synthesis of ATP or adenosine triphosphate from ADP or adenosine diphosphate and inorganic phosphate by an enzyme called ATP synthase which is located in the inner mitochondrial membrane. This enzyme harnesses energy by carrying protons from the inter-membrane space into the mitochondrial matrix and in the process produces ATP.
- Oxidative phosphorylation takes place in the mitochondria, especially involving the inter membrane space, inner membrane and mitochondrial matrix
- During the transport of electrons through the protein complexes (I, II, III, IV) of the electron transport chain a proton gradient is generated across the inner mitochondrial membrane.
- The proton gradient is such that the concentration of protons is more in the inter-membrane space and less in the matrix of the mitochondria.
- This proton gradient provides the energy to the ATP synthase for the synthesis of ATP.
- Dinitrophenol is responsible for making the inner mitochondrial membrane permeable to protons. As a result protons can directly diffuse through the inner mitochondrial membrane from the inter-membrane space into the mitochondrial matrix equalising the concentration of protons across the inner mitochondrial membrane. This causes distortion in the proton gradient. Hence, protons are no longer available for the ATP synthase to operate and synthesise ATP.
Answer:
Being raised in conditions of extreme deprivation is an environmental influence that has the clearest, most profound effect on intellectual development.
Explanation:
Answer:
"Action potential is a rapid rise and subsequent fall in voltage or membrane potential across a cellular membrane with a characteristic pattern."
It is the mode through which a neuron transports electrical signals.
Explanation:
- Option - (a) is the best choice to choose from,
- <u>The refractory period :</u>
A second action potential cannot occur until the membrane has recovered or reestablished, this is the refractory period. The absolute refractory period coincides with inactivation of voltage-gated sodium channels which makes it impossible to generate another nerve impulse.