1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
2 years ago
10

AO

Mathematics
1 answer:
iogann1982 [59]2 years ago
3 0

Answer: Summer Math Packet for Students Entering Algebra 2. 1. Percentages ... E) -15+6 = -9 f). 35:-7 = 5 g. 3[2(6+1)-32). 1+(22-1)+1. 1 = 3 h). 4:3 =

Step-by-step explanation: Good luck!

You might be interested in
Какая фигура имеет ось симметрии и центр симетрий​
Zigmanuir [339]

Answer:

Проведите линию через форму, чтобы каждая сторона была зеркальным отражением. Когда фигура складывается пополам по оси симметрии, две половинки совпадают. На этой фотографии белая линия по центру представляет собой вертикальную ось симметрии.

Step-by-step explanation:

5 0
2 years ago
What is the domain of the following parabola?
Alex17521 [72]
I think it should be C but let me know if im wrong plz
4 0
3 years ago
Find the two intersection points
bogdanovich [222]

Answer:

Our two intersection points are:

\displaystyle (3, -2) \text{ and } \left(-\frac{53}{25}, \frac{46}{25}\right)

Step-by-step explanation:

We want to find where the two graphs given by the equations:

\displaystyle (x+1)^2+(y+2)^2 = 16\text{ and } 3x+4y=1

Intersect.

When they intersect, their <em>x-</em> and <em>y-</em>values are equivalent. So, we can solve one equation for <em>y</em> and substitute it into the other and solve for <em>x</em>.

Since the linear equation is easier to solve, solve it for <em>y: </em>

<em />\displaystyle y = -\frac{3}{4} x + \frac{1}{4}<em />

<em />

Substitute this into the first equation:

\displaystyle (x+1)^2 + \left(\left(-\frac{3}{4}x + \frac{1}{4}\right) +2\right)^2 = 16

Simplify:

\displaystyle (x+1)^2 + \left(-\frac{3}{4} x  + \frac{9}{4}\right)^2 = 16

Square. We can use the perfect square trinomial pattern:

\displaystyle \underbrace{(x^2 + 2x+1)}_{(a+b)^2=a^2+2ab+b^2} + \underbrace{\left(\frac{9}{16}x^2-\frac{27}{8}x+\frac{81}{16}\right)}_{(a+b)^2=a^2+2ab+b^2} = 16

Multiply both sides by 16:

(16x^2+32x+16)+(9x^2-54x+81) = 256

Combine like terms:

25x^2+-22x+97=256

Isolate the equation:

\displaystyle 25x^2 - 22x -159=0

We can use the quadratic formula:

\displaystyle x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

In this case, <em>a</em> = 25, <em>b</em> = -22, and <em>c</em> = -159. Substitute:

\displaystyle x = \frac{-(-22)\pm\sqrt{(-22)^2-4(25)(-159)}}{2(25)}

Evaluate:

\displaystyle \begin{aligned} x &= \frac{22\pm\sqrt{16384}}{50} \\ \\ &= \frac{22\pm 128}{50}\\ \\ &=\frac{11\pm 64}{25}\end{aligned}

Hence, our two solutions are:

\displaystyle x_1 = \frac{11+64}{25} = 3\text{ and } x_2 = \frac{11-64}{25} =-\frac{53}{25}

We have our two <em>x-</em>coordinates.

To find the <em>y-</em>coordinates, we can simply substitute it into the linear equation and evaluate. Thus:

\displaystyle y_1 = -\frac{3}{4}(3)+\frac{1}{4} = -2

And:

\displaystyle y _2 = -\frac{3}{4}\left(-\frac{53}{25}\right) +\frac{1}{4} = \frac{46}{25}

Thus, our two intersection points are:

\displaystyle (3, -2) \text{ and } \left(-\frac{53}{25}, \frac{46}{25}\right)

6 0
2 years ago
The windscreen wiper of a car sweeps
AVprozaik [17]

Answer:

A ≈ 530 cm²

Step-by-step explanation:

The swept area equals the total area covered by the blade minus the unswept area.

The area of a sector with radius r and angle θ is:

A = (θ / 360) πr²

So the swept area is:

A = (θ / 360) πR² − (θ / 360) πr²

A = (θ / 360) π (R² − r²)

A = (150 / 360) π (21² − 6²)

A ≈ 530 cm²

6 0
3 years ago
Which is greater 1/2or 3/8?
ivann1987 [24]
1/2 is greater

1/2 = 0.5
3/8 = 0.375

5 0
2 years ago
Read 2 more answers
Other questions:
  • A large chocolate bar has a base area of 47.1 square feet and it’s length is 0.7 feet longer than twice it’s width. Find the len
    8·1 answer
  • What fraction can not be simplified but has 24 as its bottom number
    6·1 answer
  • Suppose that a and b are integers, a ≡ 4 (mod 13), and b ≡ 9 (mod 13). find the integer c with 0 ≤ c ≤ 12 such that
    8·1 answer
  • Rounding<br>Round each number to the nearest hundred<br>7892<br>472​
    11·2 answers
  • Can you help me on 34 and 35 please
    14·1 answer
  • If line n bisects CE, find CD. ​
    15·2 answers
  • For positive acute angles A and B it is known that sinA= 35/37 and tanB= 7/24. find the value of (A-B)
    8·1 answer
  • Find the given value of the function w(t) = 3t - 1;t = -1/3​
    12·1 answer
  • Erwin Elementary decided to plant a garden. They set up a rectangle that was
    8·1 answer
  • What would happen if you subtracted the equation for x from the equation for 10x?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!