Answer:
try working it out
Step-by-step explanation:
With ϕ ≈ 1.61803 the golden ratio, we have 1/ϕ = ϕ - 1, so that
![I = \displaystyle \int_0^\infty \frac{\sqrt[\phi]{x} \tan^{-1}(x)}{(1+x^\phi)^2} \, dx = \int_0^\infty \frac{x^{\phi-1} \tan^{-1}(x)}{x (1+x^\phi)^2} \, dx](https://tex.z-dn.net/?f=I%20%3D%20%5Cdisplaystyle%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B%5Cphi%5D%7Bx%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7B%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx%20%3D%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7Bx%5E%7B%5Cphi-1%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7Bx%20%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx)
Replace
:

Split the integral at x = 1. For the integral over [1, ∞), substitute
:

The integrals involving tan⁻¹ disappear, and we're left with

Answer:
75°
105°
Step-by-step explanation:
Two co-interor= 180°
5+7= 12
ratio12= 180°
<em>{</em><em>f</em><em>i</em><em>n</em><em>d</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>t</em><em>h</em><em>e</em><em>r</em><em> </em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>s</em><em>,</em><em> </em><em>5</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>7</em><em>)</em>
12=180°
5×180÷12 = 75°
To find 7, just subtract 180-75= 105°
<span>14.25 is your answer. Pulled from google calculator.</span>
Ans: The new price from each donut results in most revenue.
Work in the picture: