Answer:
432 cm²
Step-by-step explanation:
To find the surface area of a cuboid, there is a formula.
2lw+2lh+2hw
Length is l, height is h, and width is w.
2(12)(8)+2(12)(6)+2(6)(8)
Multiply all the terms.
336+96
Add both the terms.
= 432
The surface area of the open cuboid is 432cm².
(x-h)²+(y-k)²=r² is the equation of a circle with radius of r
so if x-h=4 and y-k=3 then
4²+3²=r²
16+9=r²
25=r²
sqrt both sides
5=r
radius is 5 units
Answer: 47.875
Step-by-step explanation:
Divide :)
Answer:
Let x be the number of tickets sold to adults and y the number sold to students:
x + y = 315. But we know that y was double x, then :
y = 2x
Plug the value of y (in the 1st equation) by 2x:
x+ 2x = 315
3x = 315
and x = 105 (which is the number of tickets sold to adults
Read more on Brainly.com - brainly.com/question/4429543#readmore
Step-by-step explanation:
Check the picture below.
let's notice the "white" ∡1 is an inscribed angle with an intercepted arc of (x-32), and the "green" ∡5 is also an inscribed angle with an intercepted arc of (2x).
the ∡6 and ∡2 are both external angles, however they intercepted two arcs, a "far arc" and a "near arc", thus we'll use the far arc - near arc formula, as you see in the picture, and we'll use the inscribed angle theorem for the other two.
![\bf \measuredangle 1=\cfrac{x-32}{2}\implies \measuredangle 1 =\cfrac{32}{2}\implies \measuredangle 1 = 16 \\\\[-0.35em] ~\dotfill\\\\ \measuredangle 5 =\cfrac{2x}{2}\implies \measuredangle 5 = x\implies \measuredangle 5 = 64 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cmeasuredangle%201%3D%5Ccfrac%7Bx-32%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%201%20%3D%5Ccfrac%7B32%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%201%20%3D%2016%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cmeasuredangle%205%20%3D%5Ccfrac%7B2x%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%205%20%3D%20x%5Cimplies%20%5Cmeasuredangle%205%20%3D%2064%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \measuredangle 2 = \cfrac{(2x+8)~~-~~(x-32)}{2}\implies \measuredangle 2=\cfrac{2x+8-x+32}{2} \\\\\\ \measuredangle 2=\cfrac{x+40}{2}\implies \measuredangle 2=\cfrac{104}{2}\implies \measuredangle 2=52 \\\\[-0.35em] ~\dotfill\\\\ \measuredangle 6=\cfrac{[(2x+8)+(x)]~~-~~(2x)}{2}\implies \measuredangle 6=\cfrac{3x+8-2x}{2}\implies \measuredangle 6=\cfrac{x+8}{2} \\\\\\ \measuredangle 6=\cfrac{72}{2}\implies \measuredangle 6=36](https://tex.z-dn.net/?f=%5Cbf%20%5Cmeasuredangle%202%20%3D%20%5Ccfrac%7B%282x%2B8%29~~-~~%28x-32%29%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%202%3D%5Ccfrac%7B2x%2B8-x%2B32%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cmeasuredangle%202%3D%5Ccfrac%7Bx%2B40%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%202%3D%5Ccfrac%7B104%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%202%3D52%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cmeasuredangle%206%3D%5Ccfrac%7B%5B%282x%2B8%29%2B%28x%29%5D~~-~~%282x%29%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%206%3D%5Ccfrac%7B3x%2B8-2x%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%206%3D%5Ccfrac%7Bx%2B8%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cmeasuredangle%206%3D%5Ccfrac%7B72%7D%7B2%7D%5Cimplies%20%5Cmeasuredangle%206%3D36)