Answer:
(9,2)
Step-by-step explanation:
m (8,6)
(7,10)
find the coordinates of the unknown endpoint
(9,2)
Answer: y is greater than -3
Step-by-step explanation:
so first write out the equation:
-2y less than 6
then we isolate the variable by dividing -2 from both sides so.....
6 divided by -2 equals -3
now since we divided it by a negetive the sight must change so........
y is greater than -3
Answer:
option B
Step-by-step explanation:
![\sqrt[3]{x^5 \ y} = (x^5 \ y )^\frac{1}{3} \ \ \ \ \ \ \ \ \ \ \ \ [ \ \sqrt[n]{x} = x^\frac{1}{n} \ \ , \ (xy)^a = x^a y^a]\\\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E5%20%5C%20y%7D%20%3D%20%28x%5E5%20%5C%20y%20%29%5E%5Cfrac%7B1%7D%7B3%7D%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%20%5C%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%3D%20x%5E%5Cfrac%7B1%7D%7Bn%7D%20%5C%20%5C%20%2C%20%20%5C%20%28xy%29%5Ea%20%20%3D%20x%5Ea%20y%5Ea%5D%5C%5C%5C%5C)
![= x^{ (5 \times \frac{1}{3} )} \ y ^{\frac{1}{3} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ ( x^a )^b = x^{ab} \ ]\\\\\\](https://tex.z-dn.net/?f=%3D%20x%5E%7B%20%285%20%5Ctimes%20%5Cfrac%7B1%7D%7B3%7D%20%29%7D%20%5C%20y%20%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%20%5C%20%5C%20%5C%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%20%5C%20%28%20x%5Ea%20%29%5Eb%20%3D%20x%5E%7Bab%7D%20%5C%20%5D%5C%5C%5C%5C%5C%5C)

Answer:
The answer to your question is: letter B
Step-by-step explanation:
Function definition: a function is a relation from a set of inputs to a set of outputs.
The most important about functions is that each input is related to one and only one output. Then there are not repeated values of inputs.
In the exercise, the inputs are -10, -25, -5, and the outputs are 5, 10, 15 and 20.
So, to solve this exercise, look for a number in the options that will not be repeated in the inputs,
Then,
- 20 is a possible option because is not repeated
-5 is not an option to complete the table because 5 already exist.
- 15 is a possible option because is not repeated previously.