Answer:
d.
Step-by-step explanation:
The goal of course is to solve for x. Right now there are 2 of them, one on each side of the equals sign, and they are both in exponential positions. We have to get them out of that position. The way we do that is by taking the natural log of both sides. The power rule then says we can move the exponents down in front.
becomes, after following the power rule:
x ln(2) = (x + 1) ln(3). We will distribute on the right side to get
x ln(2) = x ln(3) + 1 ln(3). The goal is to solve for x, so we will get both of them on the same side:
x ln(2) - x ln(3) = ln(3). We can now factor out the common x on the left to get:
x(ln2 - ln3) = ln3. The rule that "undoes" that division is the quotient rule backwards. Before that was a subtraction problem it was a division, so we put it back that way and get:
. We can factor out the ln from the left to simplify a bit:
. Divide both sides by ln(2/3) to get the x all alone:

On your calculator, you will find that this is approximately -2.709
<h3>
Answer: 5/9</h3>
As an approximate decimal, this is 0.5556 which converts to 55.56%
======================================================
Explanation:
Let's say there are 100 households (just for the sake of simplicity). We are told that 90% of them have answering machines. So that means 90 households have answering machines. In addition, 50 households have answering machines and call waiting. Those 50 households are part of the 90 mentioned previously.
We then select a house at random. Someone tells us (or we have some kind of prior knowledge) that whichever house is selected, they have an answering machine. We can ignore the 10 households that don't have an answering machine. Out of those 90 households, 50 have both features. So 50/90 = 5/9 is the probability of getting a household with both features.
The answer would be 1/2 or 50% if we didn't have the prior knowledge of the household having an answering machine. But with this prior knowledge, the conditions change and so does the probability.
----------------
You could also compute 0.50/0.90 to get the same answer.
When you are solving an algebraic one-step equation, the goal is to isolate the variable on one side of the equal sign, two-step equations are the same, but with one more step (hence the name)
Answer:
C. 30(-2)= -60 is the correct answer
Step-by-step explanation: