Answer:
x = 4
Step-by-step explanation:
You want x when ...
g(x) = f(2)
2x -3 = 3(2) -1
2x = 8 . . . . . . . . add 3, simplify
x = 4 . . . . . . . . . divide by 2
For this case we must simplify the following expression:
![\frac {6-3 \sqrt [3] {6}} {\sqrt [3] {9}}](https://tex.z-dn.net/?f=%5Cfrac%20%7B6-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%7D%20%7B%5Csqrt%20%5B3%5D%20%7B9%7D%7D)
Multiplying the numerator and denominator by![(\sqrt [3] {9}) ^ 2](https://tex.z-dn.net/?f=%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202)
![\frac {6-3 \sqrt [3] {6}} {\sqrt [3] {9}} * \frac {(\sqrt [3] {9}) ^ 2} {(\sqrt [3] { 9}) ^ 2} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B6-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%7D%20%7B%5Csqrt%20%5B3%5D%20%7B9%7D%7D%20%2A%20%5Cfrac%20%7B%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B%28%5Csqrt%20%5B3%5D%20%7B%209%7D%29%20%5E%202%7D%20%3D)
We rewrite:
![\frac {\frac {6-3 \sqrt [3] {6}} * (\sqrt [3] {9}) ^ 2} {\sqrt [3] {9} * (\sqrt [3] {9 }) ^ 2} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%5Cfrac%20%7B6-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%7D%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B%5Csqrt%20%5B3%5D%20%7B9%7D%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%20%7D%29%20%5E%202%7D%20%3D)
By properties of powers we have that:
![a ^ m * a ^ n = a ^ {m + n}\\\frac {(6-3 \sqrt [3] {6}) * (\sqrt [3] {9}) ^ 2} {(\sqrt [3] {9}) ^ 3} =\\\frac {(6-3 \sqrt [3] {6}) * (\sqrt [3] {9}) ^ 2} {9} =](https://tex.z-dn.net/?f=a%20%5E%20m%20%2A%20a%20%5E%20n%20%3D%20a%20%5E%20%7Bm%20%2B%20n%7D%5C%5C%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%203%7D%20%3D%5C%5C%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%28%5Csqrt%20%5B3%5D%20%7B9%7D%29%20%5E%202%7D%20%7B9%7D%20%3D)
We rewrite, moving the exponent within the radical:
![\frac {(6-3 \sqrt [3] {6}) * \sqrt [3] {9 ^ 2}} {9} =\\\frac {(6-3 \sqrt [3] {6}) * \sqrt [3] {81}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%5Csqrt%20%5B3%5D%20%7B9%20%5E%202%7D%7D%20%7B9%7D%20%3D%5C%5C%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%5Csqrt%20%5B3%5D%20%7B81%7D%7D%20%7B9%7D%20%3D)
We can rewrite
![\frac {(6-3 \sqrt [3] {6}) * \sqrt [3] {3 * 3 ^ 3}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%20%5Csqrt%20%5B3%5D%20%7B3%20%2A%203%20%5E%203%7D%7D%20%7B9%7D%20%3D)
We simplify:
![\frac {(6-3 \sqrt [3] {6}) * 3 \sqrt [3] {3}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B%286-3%20%5Csqrt%20%5B3%5D%20%7B6%7D%29%20%2A%203%20%5Csqrt%20%5B3%5D%20%7B3%7D%7D%20%7B9%7D%20%3D)
We apply distributive property:
![\frac {18 \sqrt [3] {3} -9 \sqrt [3] {18}} {9} =](https://tex.z-dn.net/?f=%5Cfrac%20%7B18%20%5Csqrt%20%5B3%5D%20%7B3%7D%20-9%20%5Csqrt%20%5B3%5D%20%7B18%7D%7D%20%7B9%7D%20%3D)
Simplifying we finally have:
![2 \sqrt [3] {3} - \sqrt [3] {18}](https://tex.z-dn.net/?f=2%20%5Csqrt%20%5B3%5D%20%7B3%7D%20-%20%5Csqrt%20%5B3%5D%20%7B18%7D)
Answer:
![2 \sqrt [3] {3} - \sqrt [3] {18}](https://tex.z-dn.net/?f=2%20%5Csqrt%20%5B3%5D%20%7B3%7D%20-%20%5Csqrt%20%5B3%5D%20%7B18%7D)
<h3>What would be the value of $150 after eight years if you earn 12 % interest per year? A. $371.39 B. $415.96 C. $465.88 </h3>
<em>The compound interest is applied, that is to say, each year the interest produced is accumulated to the outstanding capital and the interest of the next period is calculated on the new outstanding capital.</em>
The formula for calculating compound interest is:
Compound interest = Total amount of Principal and interest in future less Principal amount at present = [P(1 + i)ⁿ] – P
(Where P = Principal, i = nominal annual interest rate in percentage terms, and n = number of compounding periods)
[P(1 + i)ⁿ] – P = P[(1 + i)ⁿ – 1] = $150[(1 + 12/100)⁸ – 1] = $150[(1.12)⁸ – 1] = $150[2.47596317629 - 1] = $150[1.47596317629] = $221.39
Total amount = $150 + $221.39 = $371.39
Answer : A.) $371.39
Answer:
Step-by-step explanation:
Let x represent amount of fruit snacks tyler ate.
Let x-3/4 represent amount of fruit snacks Han ate.
Thus x-3/4 is an expression for the number of fruit snacks Han ate.
The answer is 2000 customers paid the old rate, the remainder (500) paid new rate