Answer:
it 2 parts away
Step-by-step explanation:
Answer:
(√2)/2
Step-by-step explanation:
The ratio of the radius of the circle to the side of the inscribed square is the same regardless of the size of the objects.
The radius of the circle is half the length of the diagonal of the square. For simplicity, we can call the side of the square 1, so its diagonal is √(1²+1²) = √2 by the Pythagorean theorem. The radius is half that value, so is (√2)/2. The desired ratio is this value divided by 1.
Scaling up our unit square to one with a side length of 3 inches, we have ...
radius/side = ((3√2)/2) / 3 = (√2)/2
_____
A square with a side length of 3 inches will have an area of (3 in)² = 9 in².
Answer:
We want to solve the equation:
(6 - 1) + (3m)i = -12 + 27i
Where m is a complex number.
first, we can rewrite this as:
5 + 3*m*i = -12 + 27*i
3*m*i = -12 - 5 + 27*i
3*m*i = -17 + 27*i
And we can write m as:
m = a + b*i
Replacing that in the above equation we get:
3*(a + b*i)*i = -17 + 27*i
3*a*i + 3*b*i^2 = -17 + 27*i
and we know that i^2 = -1
3*a*i - 3*b = -17 + 27*i
The real part in the left (-3*b) must be equal to the real part in the right (-17)
then:
-3*b = -17
b = -17/-3 = 17/3
And the imaginary part in the left (3*a) must be equal to the imaginary part in the right (27)
then:
3*a = 27
a = 27/3.
Then the value of m is:
m = a + b*i = (27/3) + (17/3)*i
Answer:
4
Step-by-step explanation:
RS + ST = RT
=> 3x-8 + x = 2x
4x - 8 = 2x
Subtract 2x from both the sides,
4x - 2x - 8 = 0
2x - 8 = 0
Add 8,
2x = 8
Divide by 2,
x = 8/2 = 4
Length of line segment ST = x = 4