<span>Take the integral:
integral (cos(x))/sqrt(cos(x)+1) dx
For the integrand (cos(x))/sqrt(1+cos(x)), substitute u = 1+cos(x) and du = -sin(x) dx:
= integral (u-1)/(sqrt(2-u) u) du
For the integrand (-1+u)/(sqrt(2-u) u), substitute s = sqrt(2-u) and ds = -1/(2 sqrt(2-u)) du:
= integral -(2 (1-s^2))/(2-s^2) ds
Factor out constants:
= -2 integral (1-s^2)/(2-s^2) ds
For the integrand (1-s^2)/(2-s^2), cancel common terms in the numerator and denominator:
= -2 integral (s^2-1)/(s^2-2) ds
For the integrand (-1+s^2)/(-2+s^2), do long division:
= -2 integral (1/(s^2-2)+1) ds
Integrate the sum term by term:
= -2 integral 1/(s^2-2) ds-2 integral 1 ds
Factor -2 from the denominator:
= -2 integral -1/(2 (1-s^2/2)) ds-2 integral 1 ds
Factor out constants:
= integral 1/(1-s^2/2) ds-2 integral 1 ds
For the integrand 1/(1-s^2/2), substitute p = s/sqrt(2) and dp = 1/sqrt(2) ds:
= sqrt(2) integral 1/(1-p^2) dp-2 integral 1 ds
The integral of 1/(1-p^2) is tanh^(-1)(p):
= sqrt(2) tanh^(-1)(p)-2 integral 1 ds
The integral of 1 is s:
= sqrt(2) tanh^(-1)(p)-2 s+constant
Substitute back for p = s/sqrt(2):
= sqrt(2) tanh^(-1)(s/sqrt(2))-2 s+constant
Substitute back for s = sqrt(2-u):
= sqrt(2) tanh^(-1)(sqrt(1-u/2))-2 sqrt(2-u)+constant
Substitute back for u = 1+cos(x):
= sqrt(2) tanh^(-1)(sqrt(sin^2(x/2)))-2 sqrt(1-cos(x))+constant
Factor the answer a different way:
= sqrt(1-cos(x)) (csc(x/2) tanh^(-1)(sin(x/2))-2)+constant
Which is equivalent for restricted x values to:
Answer: |
| = (2 cos(x/2) (2 sin(x/2)+log(cos(x/4)-sin(x/4))-log(sin(x/4)+cos(x/4))))/sqrt(cos(x)+1)+constant</span>
Answer:
6.569
Step-by-step explanation:
Difference is subtraction.
10.22-3.651=6.569
Answer:
Widow's Share = Rs 500.05
Son's share = Rs 1400.14
Step-by-step explanation:
Property = 4000.40
Widow get share = 0.125
So, Share of Widow = 0.125 * 4000.40
Widow's Share = Rs 500.05
Remaining Property = 4000.40 - 500.05
Remaining Property = 3500.35
Son's share = 0.4 * 3500.35
Son's share = Rs 1400.14
3(5)+15= 30
because BIDMAS so we would multiply 3 by 5 then add the answer which would be 15 to 15 and we would get 30.
I think you mean roll a die. To do this you would find the number of non-even numbers and divide that number by the total amount of numbers on the die. On a normal six-sided die these numbers would be 1,3,and 5, so your probability of not rolling an even number would be 50%