Answer:
Left side: 1/20 Right side: 11/20
:)
Answer:
8( 3x+2y) ( 9x^2 -6xy +4y^2)
Step-by-step explanation:
216x^3 + 64y^3
Factor out the greatest common factor of 8
8( 27x^3 +8y^3)
Rewriting
8 ( (3x)^3 + (2y)^2))
Recognizing this as the difference of cubes)
a^3 + b^3 = (a+b) (a^2-ab+b^2)
8 ( (3x)^3 + (2y)^2)) = 8( 3x+2y) ( 9x^2 -(3x)(2y) +4y^2)
=8( 3x+2y) ( 9x^2 -6xy +4y^2)
Answer:
![9c^3 - 12c^2 - 18c - 24= [3c^2 - 6][3c - 4]](https://tex.z-dn.net/?f=9c%5E3%20-%2012c%5E2%20-%2018c%20-%2024%3D%20%5B3c%5E2%20-%206%5D%5B3c%20-%204%5D)
Step-by-step explanation:
Given

Required
Factor
Group into 2
![[9c^3 - 12c^2] - [18c + 24]](https://tex.z-dn.net/?f=%5B9c%5E3%20-%2012c%5E2%5D%20-%20%5B18c%20%2B%2024%5D)
Factorize each group
![3c^2[3c - 4] - 6[3c - 4]](https://tex.z-dn.net/?f=3c%5E2%5B3c%20-%204%5D%20-%206%5B3c%20-%204%5D)
Factor out 3c - 4
![[3c^2 - 6][3c - 4]](https://tex.z-dn.net/?f=%5B3c%5E2%20-%206%5D%5B3c%20-%204%5D)
Hence:
![9c^3 - 12c^2 - 18c - 24= [3c^2 - 6][3c - 4]](https://tex.z-dn.net/?f=9c%5E3%20-%2012c%5E2%20-%2018c%20-%2024%3D%20%5B3c%5E2%20-%206%5D%5B3c%20-%204%5D)