1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
2 years ago
7

An airplane captain must have a minimum of 1500 hours of flying experience. Tom has 715.

Mathematics
2 answers:
MatroZZZ [7]2 years ago
8 0

Answer:

He needs 785 more minutes

Step-by-step explanation:

vampirchik [111]2 years ago
3 0

Answer:

Uhh, 785 more hours till he can become a captain

Step-by-step explanation:

You might be interested in
What is the slope between (-4,4) and (-6,6)
nalin [4]

\textsf{Let's calculate the slope of the line passing thought the points (-4, 4) and (-6, 6) } \\ \textsf{using the following formula: }\mathsf{m = \frac{\Delta y}{\Delta x}} \textsf{ where m is the slope of the line.}\textsf{So:}

\mathsf{m = \dfrac{\Delta y}{\Delta x} = \dfrac{4 - 6}{-4 - (-6)} = \dfrac{-2}{2} = -1}

\textsf{Hence the slope is -1.}

5 0
3 years ago
Hello please help i’ll give brainliest
crimeas [40]

Answer:

the 2nd one

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
if two positive integers P and Q can be expressed as p = a b square and q equals A cube B where A and B being prime numbers then
vodka [1.7K]
P = ab^2
q = a^3 b

p = a * b * b
q = a*a*a * b

Pairing the duplicates we have LCM = a*a*a*b*b  = a^3 b^2 answer
4 0
3 years ago
Solve the equation: x2 = 1
oee [108]

Answer:

x = 0.5

Step-by-step explanation:

hope this helps!

3 0
3 years ago
Read 2 more answers
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
Other questions:
  • A study attempts to compare two sunscreens. Each of 50 subjects with varying skin complexions will use both sunscreens—Screen A
    6·1 answer
  • 1) The figure at the top is a parallelogram; the area is A = bh; where b is the base and h is the height; use properties of spec
    5·1 answer
  • You own 5 pairs of jeans and want to take 2 of them with you on vacation. In how many ways can you choose 2 pairs of jeans?
    14·1 answer
  • Can u answer this for me​
    12·1 answer
  • The standard ratio of a photo's width to it's length is 2/3. what is the length of a photo that has a width of 14 inches?
    11·2 answers
  • IXL HELP ASAP TYSM GOD BLESS YOU AND YOUR FAMILY ASAP TYSM 10 BRAINLY POINTS TYSM ASAP
    6·1 answer
  • Which of the following are solutions to the graph
    9·1 answer
  • The double number line shows that Toni can type 180 words in 2 minutes.
    7·1 answer
  • The sum of three times a number and a second number is five. two times the first number added to the second number is 10. find t
    11·1 answer
  • 8(x+2) Evaluate when x=3
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!