7cos(x) + 1 = 6sec(x)
7cos(x) + 1 = 6/cos(x)
7cos^(x) + cos(x) = 6
7cos^(x) + cos(x) - 6 = 0
[7cos(x) - 6][cos(x) + 1] = 0
cos(x) = 6/7 , x = arccos(6/7) and
cos(x) = -1, x = 180
Answer: 15e^5x
Step - by - step
y=3e^5x - 2
By the sum rule, the derivative of 3e^5x - 2 with respect to x is d/dx [ 3e^5x ] + d/dx [-2].
d/dx [ 3e^5x ] + d/dx [ -2 ]
Evalute d/dx [ 3e^5x ]
Since 3 is constant with respect to x , the derivative of 3e^5x with respect to x is
3 d/dx [ e^5x ].
3 d/dx [ e^5x ] + d/dx [ -2 ]
Differentiate using the chain rule, which states that d/dx [ f(g(x))] is f' (g(x)) g' (x) where f(x) = e^x and g(x) = 5x.
To apply the Chain Rule, set u as 5x.
3 ( d/du [ e^u] d/dx [5x] ) + d/dx [ -2]
Differentiate using the Exponential rule which states that d/du [ a^u ] is a^u ln(a) where a=e.
3( e^u d/dx[5x] ) + d/dx [ -2 ]
Replace
3(e^5x d/dx [5x] ) + d/dx [ -2 ]
3(e^5x( 5 d/dx [x] )) + d/dx [ -2 ]
Diffentiate using the Power Rule which states that d/dx [x^n] is nx^n-1 where n=1.
3(e^5x(5*1)) + d/dx [-2]
3 ( e^5x * 5 ) + d/dx [-2]
Multiply 5 by 3
15e^5x + d/dx [-2]
Since -2 is constant with respect to x, the derivative of -2 with respect to x is 0.
15e^5x + 0
15e^5x
Answer with explanation:
Using following law of indices



8. A number raised to a negative exponent is negative.
Explaining with the help of few examples

Option C: Sometimes
1.Option B
2.Option A
3.Option C
4.Option A
5.Option D
6. 
7.Option B
8.Option C
9.Option A
10.Option 
Answer:
plug in -6
-(-6) - 3
the 6 turns into a positive
subtract 3 from 6
= 3
(6 + 5i)(4 + 7i) = 24 + 42i + 20i + 35i²
= 35i² + 62i + 24
The product of 6+5i and 4+7i is 35i² + 62i + 24.