1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sleet_krkn [62]
2 years ago
6

Which is the solution set of 7y +1> 8y- 9?

Mathematics
1 answer:
fomenos2 years ago
7 0

Answer:

y < 10 or (10, -∞)

Step-by-step explanation:

7y + 1 > 8y - 9

Simply get the y's on the right by subtracting 7y from both sides:

1 > y - 9

then adding 9 to both sides:

y < 10

or in interval notation:

(10, -∞)

You might be interested in
What are the solutions to the equation 3(X -4)(X +5) =0
cestrela7 [59]
Answer should be: X = 4, -5
4 0
3 years ago
Realice la óperacion y exprese el resultado en notación científica (0,00000826) (235×10 elevado a -7) sobre 0,0017×10 elevado a
earnstyle [38]

Answer:

1,42 * 10 ^ -5

Step-by-step explanation:

La notación científica también se conoce como forma estándar.

Tenemos que realizar la siguiente operación y dejar el resultado en forma estándar.

Entonces;

0,00000826 * 235 × 10 ^ -7 / 0,0017 × 10 ^ -2

También;

8.26 * 10 ^ -6 * 2.35 * 10 ^ -5 / 1.7 * 10 ^ -5

= 19,411 * 10 ^ -11 / 1,7 * 10 ^ -5

= 1,42 * 10 ^ -5

6 0
2 years ago
EXAMPLE 5 Find the maximum value of the function f(x, y, z) = x + 2y + 11z on the curve of intersection of the plane x − y + z =
Taya2010 [7]

Answer:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

<em>Maximum value of f=2.41</em>

Step-by-step explanation:

<u>Lagrange Multipliers</u>

It's a method to optimize (maximize or minimize) functions of more than one variable subject to equality restrictions.

Given a function of three variables f(x,y,z) and a restriction in the form of an equality g(x,y,z)=0, then we are interested in finding the values of x,y,z where both gradients are parallel, i.e.

\bigtriangledown  f=\lambda \bigtriangledown  g

for some scalar \lambda called the Lagrange multiplier.

For more than one restriction, say g(x,y,z)=0 and h(x,y,z)=0, the Lagrange condition is

\bigtriangledown  f=\lambda \bigtriangledown  g+\mu \bigtriangledown  h

The gradient of f is

\bigtriangledown  f=

Considering each variable as independent we have three equations right from the Lagrange condition, plus one for each restriction, to form a 5x5 system of equations in x,y,z,\lambda,\mu.

We have

f(x, y, z) = x + 2y + 11z\\g(x, y, z) = x - y + z -1=0\\h(x, y, z) = x^2 + y^2 -1= 0

Let's compute the partial derivatives

f_x=1\ ,f_y=2\ ,f_z=11\ \\g_x=1\ ,g_y=-1\ ,g_z=1\\h_x=2x\ ,h_y=2y\ ,h_z=0

The Lagrange condition leads to

1=\lambda (1)+\mu (2x)\\2=\lambda (-1)+\mu (2y)\\11=\lambda (1)+\mu (0)

Operating and simplifying

1=\lambda+2x\mu\\2=-\lambda +2y\mu \\\lambda=11

Replacing the value of \lambda in the two first equations, we get

1=11+2x\mu\\2=-11 +2y\mu

From the first equation

\displaystyle 2\mu=\frac{-10}{x}

Replacing into the second

\displaystyle 13=y\frac{-10}{x}

Or, equivalently

13x=-10y

Squaring

169x^2=100y^2

To solve, we use the restriction h

x^2 + y^2 = 1

Multiplying by 100

100x^2 + 100y^2 = 100

Replacing the above condition

100x^2 + 169x^2 = 100

Solving for x

\displaystyle x=\pm \frac{10}{\sqrt{269}}

We compute the values of y by solving

13x=-10y

\displaystyle y=-\frac{13x}{10}

For

\displaystyle x= \frac{10}{\sqrt{269}}

\displaystyle y= -\frac{13}{\sqrt{269}}

And for

\displaystyle x= -\frac{10}{\sqrt{269}}

\displaystyle y= \frac{13}{\sqrt{269}}

Finally, we get z using the other restriction

x - y + z = 1

Or:

z = 1-x+y

The first solution yields to

\displaystyle z = 1-\frac{10}{\sqrt{269}}-\frac{13}{\sqrt{269}}

\displaystyle z = \frac{-23\sqrt{269}+269}{269}

And the second solution gives us

\displaystyle z = 1+\frac{10}{\sqrt{269}}+\frac{13}{\sqrt{269}}

\displaystyle z = \frac{23\sqrt{269}+269}{269}

Complete first solution:

\displaystyle x= \frac{10}{\sqrt{269}}\\\\\displaystyle y= -\frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{-23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=-0.4

Complete second solution:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=2.4

The second solution maximizes f to 2.4

5 0
3 years ago
“The product of a number and 4”
RoseWind [281]

Answer:

Mmm... a product would be like 10+4=14

Step-by-step explanation:

thats what you are looking for right

3 0
3 years ago
If the area of a square room is 36 m2, what is the length of each side?
Sauron [17]
36 it wouldnt change the only thing that would is the hight and the volume 



3 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose $10000 is deposited in a bank at 3.5% annual interest. what is the interest earned after one year
    14·1 answer
  • Principal fourth root of 1
    9·1 answer
  • The second hand on a clock is 8 cm,long.
    14·1 answer
  • If triangle RST and triangle XYZ are similar, which statement must be true?
    9·2 answers
  • The height of a box is 5 inches. It’s length is 5 inches more than it’s width. Find the length if the volume is 120.
    15·1 answer
  • Can you help me on 34 and 35 please
    14·1 answer
  • ANSWER FOR BRAINLIEST :)
    9·2 answers
  • I'LL GIVE BRAINLIEST TO WHOEVER ANSWERS!!!!
    14·2 answers
  • Help help help math math
    12·1 answer
  • 5 stars on your answer. And a "thank you".
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!