1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvv77 [185]
3 years ago
15

I need help for question 11!! Will give brainliest!!!

Mathematics
1 answer:
Taya2010 [7]3 years ago
8 0

Answer: d = 0.5

Step-by-step explanation:

2d - 9 = 5d - 3 (3d + 2)

2d - 9 = 5d - 9d - 6

2d - 9 = -4d - 6

+ 4d +4d

6d - 9 = -6

+9 +9

6d = 3

/6 /6

d = 0.5

You might be interested in
Figure ABCD is a parallelogram. If ABCD is also a rhombus, what must be the value of x? 13 15 18 23
nevsk [136]

Answer: First option 13

Solution

If ABCD is a rhombus, the diagonals must be perpendicular, then the angle (5x+25)° must be a right angle (90°):

(5x+25)°=90°

5x+25=90

Solving for x: Subtracting 25 both sides of the equation:

5x+25-25=90-25

Subtracting:

5x=65

Dividing both sides of the equation by 5:

5x/5=65/5

Dividing:

x=13

Answer: The value of x must be 13

6 0
3 years ago
Read 2 more answers
Please answer this question only if you know the answer! 20 points and brainliest!
iogann1982 [59]

Your answer would be C

Brainliest Plzz

6 0
3 years ago
Oh freight elevator can hold a maximum weight of 3500 pounds and delivery man weighs 200 pounds is delivering curtains that each
mario62 [17]

Answer:

200+48n\leq 3500

n\leq 66.7

Step-by-step explanation:

  • The freight elevator can hold a maximum weight of 3500 pounds
  • The delivery man weighs 200 pounds
  • Each carton weighs 48 pounds

Let the number of cartons he can safely put on the elevator at one time=n

Total weight of Carton=48n

Since the weight of the man and the cartons combined must not be more than 3500 pounds,

Therefore,an inequality that represents the situation is:

200+48n\leq 3500

We can solve for n if required

200-200+48n\leq 3500-200\\48n\leq 3200\\\text{Divide both sides by 48}\\n\leq66.7

The delivery man can safely carry 66 Cartons.

4 0
3 years ago
F(x)=4^x and g(x)=4^x+2
dsp73

Given:

The two functions are:

f(x)=4^x

g(x)=4^x+2

To find:

The type of transformation from f(x) to g(x) in the problem above and including its distance moved.

Solution:

The transformation is defined as

g(x)=f(x+a)+b                .... (i)

Where, a is horizontal shift and b is vertical shift.  

  • If a>0, then the graph shifts a units left.
  • If a<0, then the graph shifts a units right.
  • If b>0, then the graph shifts b units up.
  • If b<0, then the graph shifts b units down.

We have,

f(x)=4^x

g(x)=4^x+2

The function g(x) can be written as

g(x)=f(x)+2            ...(ii)

On comparing (i) and (ii), we get

a=0,b=2

Therefore, the type of transformation is translation and the graph of f(x) shifts 2 units up to get the graph of g(x).

3 0
3 years ago
Suppose the ages of multiple birth mothers (4 or more births) are normally distributed with a mean age of 35.5 years and a stand
Ann [662]

Answer:

40.65% of these mothers are between the ages of 32 to 40

23.27% of these mothers are less than 30 years old

37.07% of these mothers are more than 38 years old

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 35.5, \sigma = 7.5

What percent of these mothers are between the ages of 32 to 40?

This is the pvalue of Z when X = 40 subtracted by the pvalue of Z when X = 32.

X = 40

Z = \frac{X - \mu}{\sigma}

Z = \frac{40 - 35.5}{7.5}

Z = 0.6

Z = 0.6 has a pvalue of 0.7257

X = 32

Z = \frac{X - \mu}{\sigma}

Z = \frac{32 - 35.5}{7.5}

Z = -0.47

Z = -0.47 has a pvalue of 0.3192

0.7257 - 0.3192 = 0.4065

40.65% of these mothers are between the ages of 32 to 40

What percent of these mothers are less than 30 years old?

This is the pvalue of Z when X = 30.

Z = \frac{X - \mu}{\sigma}

Z = \frac{30 - 35.5}{7.5}

Z = -0.73

Z = -0.73 has a pvalue of 0.2327

23.27% of these mothers are less than 30 years old

What percent of these mothers are more than 38 years old?

This is 1 subtracted by the pvalue of Z when X = 38.

Z = \frac{X - \mu}{\sigma}

Z = \frac{38 - 35.5}{7.5}

Z = 0.33

Z = 0.33 has a pvalue of 0.6293

1 - 0.6293 = 0.3707

37.07% of these mothers are more than 38 years old

5 0
3 years ago
Other questions:
  • What is the first step on the following division problem?
    8·1 answer
  • The student business club on your campus has decided to hold a pizza fund raiser. The club plans to buy 50 pizzas from Dominos a
    10·1 answer
  • I’ll mark as BRANLIEST!!
    8·1 answer
  • A school buys a box of staples to refill all 28 staplers in the building. The box has 5,000 total Staples and there are 210 Stap
    10·1 answer
  • I need help I'll give all reward and points! MATH
    12·1 answer
  • Complete the statement of each of these rules:
    5·1 answer
  • Arlene set up tables for a dinner. She put 6 chairs at each table. If t represents the number of tables Alrene set up, which equ
    5·1 answer
  • Find the area of the sector.<br> 20 degrees<br> 6 cm radius
    7·1 answer
  • If f(x) and f^-1(x) are inverse functions of each other and f(x) = 2x+5, what is f^-1(8) ? O -1 O 3/2 O 41/8 O 23​
    10·1 answer
  • The scatterplot represents the total fee for hours renting a bike. The line of best fit for the data is y = 6.855x + 10.215.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!