1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
4 years ago
10

Using the numbers 8,6,4, and 2, in that order, write an expression that equals 6

Mathematics
1 answer:
jenyasd209 [6]4 years ago
5 0
8+6-(4*2)
Remember PEMDAS to help

You might be interested in
HELP!!! Picture included :).
jasenka [17]

Answer:

(A'B'): 3 1/2 IN.

(D'E'): 2 1/2 IN.

(R'S'): 4 IN.

Step-by-step explanation:

Just slice the numbers in half

Also i took the test.

6 0
3 years ago
Use the graph of f to estimate the local maximum and local minimum. (5 points)
Alex
The one under the one you picked but im not 100% sure
3 0
4 years ago
Read 2 more answers
The kindergarten class has 10 girls and 10 boys. If two students are chosen at random to be in the school play, what is the prob
Akimi4 [234]
50% because there's equal value of both variables
6 0
4 years ago
Read 2 more answers
Prove for any positive integer n, n^3 +11n is a multiple of 6
suter [353]

There are probably other ways to approach this, but I'll focus on a proof by induction.

The base case is that n = 1. Plugging this into the expression gets us

n^3+11n = 1^3+11(1) = 1+11 = 12

which is a multiple of 6. So that takes care of the base case.

----------------------------------

Now for the inductive step, which is often a tricky thing to grasp if you're not used to it. I recommend keeping at practice to get better familiar with these types of proofs.

The idea is this: assume that k^3+11k is a multiple of 6 for some integer k > 1

Based on that assumption, we need to prove that (k+1)^3+11(k+1) is also a multiple of 6. Note how I've replaced every k with k+1. This is the next value up after k.

If we can show that the (k+1)th case works, based on the assumption, then we've effectively wrapped up the inductive proof. Think of it like a chain of dominoes. One knocks over the other to take care of every case (aka every positive integer n)

-----------------------------------

Let's do a bit of algebra to say

(k+1)^3+11(k+1)

(k^3+3k^2+3k+1) + 11(k+1)

k^3+3k^2+3k+1+11k+11

(k^3+11k) + (3k^2+3k+12)

(k^3+11k) + 3(k^2+k+4)

At this point, we have the k^3+11k as the first group while we have 3(k^2+k+4) as the second group. We already know that k^3+11k is a multiple of 6, so we don't need to worry about it. We just need to show that 3(k^2+k+4) is also a multiple of 6. This means we need to show k^2+k+4 is a multiple of 2, i.e. it's even.

------------------------------------

If k is even, then k = 2m for some integer m

That means k^2+k+4 = (2m)^2+(2m)+4 = 4m^2+2m+4 = 2(m^2+m+2)

We can see that if k is even, then k^2+k+4 is also even.

If k is odd, then k = 2m+1 and

k^2+k+4 = (2m+1)^2+(2m+1)+4 = 4m^2+4m+1+2m+1+4 = 2(2m^2+3m+3)

That shows k^2+k+4 is even when k is odd.

-------------------------------------

In short, the last section shows that k^2+k+4 is always even for any integer

That then points to 3(k^2+k+4) being a multiple of 6

Which then further points to (k^3+11k) + 3(k^2+k+4) being a multiple of 6

It's a lot of work, but we've shown that (k+1)^3+11(k+1) is a multiple of 6 based on the assumption that k^3+11k is a multiple of 6.

This concludes the inductive step and overall the proof is done by this point.

6 0
3 years ago
Read 2 more answers
Use the substitution method to sloved the systmem of equaions. Choose the correct order pair
vazorg [7]
X= 12 + y
So then plug in
12 + y + y = 12
2y=0
Y= 0
X + 0 = 12
X= 12
this is prob wrong lol but hopefully it helps
4 0
3 years ago
Other questions:
  • The equation of line m is 3x−5y=−4.
    9·1 answer
  • A hiker travels 45 degrees north of east for 30 km. What is his NORTH (or y) displacement component? Round your answer and inclu
    8·1 answer
  • Question: Eight trials are simulated. The results are shown in the table.
    9·2 answers
  • If 45 cookies will serve 15 students, how many cookies are needed for 30 students?
    8·2 answers
  • 13. A certain town with a population of 100,000 has 3 newspapers: I, II, and III. The proportions of townspeople who read these
    11·1 answer
  • Half of the students in Max's class volunteer at the local community center.Fifteen students do not volunteer.If there are 12 bo
    9·1 answer
  • Suppose that a new fuel-efficient European car travels an average of 26 kilometers on 1 liter of gas. If gas costs 2.25 euros pe
    9·2 answers
  • What strategy would be the best to solve this problem?
    6·1 answer
  • Parallelogram Problem
    7·1 answer
  • ASSIGNMENT<br> Simplify each of the following powers of i.<br> I 15=
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!