Looking at this problem in terms of geometry makes it easier than trying to think of it algebraically.
If you want the largest possible x+y, it's equivalent to finding a rectangle with width x and length y that has the largest perimeter.
If you want the smallest possible x+y, it's equivalent to finding the rectangle with the smallest perimeter.
However, the area x*y must be constant and = 100.
We know that a square has the smallest perimeter to area ratio. This means that the smallest perimeter rectangle with area 100 is a square with side length 10. For this square, x+y = 20.
We also know that the further the rectangle stretches, the larger its perimeter to area ratio becomes. This means that a rectangle with side lengths 100 and 1 with an area of 100 has the largest perimeter. For this rectangle, x+y = 101.
So, the difference between the max and min values of x+y = 101 - 20 = 81.
Answer:
12 with the exponent of 6 becuz 12 is bigger than 8
To find which of the following roots is between "8" and "7" we can calculate the root of which numbers result in 8 and 7. To do this we will power them by 2, this is done because power is the oposite operation to the root. Doing this gives us:

So the root of 64 is 8 and the root of 49 is 7. We need to find the number that is between 49 and 64.
From the options the only one that qualifies is 52. The correct option is b.
Each egg is a 1$.49 so add 2 which will be $3.48 then add $1.49 gfor the bacon which will be 5.33 then 1.09 which will be $6.42 then add tax so 6.90 is her total and subtract 10$ from 6.90 she got 3.10 in change
X^2 + 4x - 16 - 11/(x + 2)