The logarithmic expression
can be expressed as
.
Given to us
![\rm log_w\dfrac{(x^2-6)^4}{\sqrt[3]{x^2-8}}](https://tex.z-dn.net/?f=%5Crm%20log_w%5Cdfrac%7B%28x%5E2-6%29%5E4%7D%7B%5Csqrt%5B3%5D%7Bx%5E2-8%7D%7D)
<h3>Which expression is equivalent to
![\rm log_w\dfrac{(x^2-6)^4}{\sqrt[3]{x^2-8}}](https://tex.z-dn.net/?f=%5Crm%20log_w%5Cdfrac%7B%28x%5E2-6%29%5E4%7D%7B%5Csqrt%5B3%5D%7Bx%5E2-8%7D%7D)
?</h3>
To solve the problem we will use the basic logarithmic properties,
![\rm log_w\dfrac{(x^2-6)^4}{\sqrt[3]{x^2-8}}](https://tex.z-dn.net/?f=%5Crm%20log_w%5Cdfrac%7B%28x%5E2-6%29%5E4%7D%7B%5Csqrt%5B3%5D%7Bx%5E2-8%7D%7D)
Using the logarithmic property
,
![=\rm log_w{(x^2-6)^4} - log_w{\sqrt[3]{x^2-8}}](https://tex.z-dn.net/?f=%3D%5Crm%20log_w%7B%28x%5E2-6%29%5E4%7D%20-%20log_w%7B%5Csqrt%5B3%5D%7Bx%5E2-8%7D%7D)
Using the exponential property
,

Using the logarithmic property
,

Hence, the logarithmic expression
can be expressed as
.
Learn more about Logarithmic Expression:
brainly.com/question/7302008