1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shtirl [24]
2 years ago
14

WORTH 100 POINTS

Mathematics
2 answers:
Elanso [62]2 years ago
3 0

Answer:

If Lucas reaches into the refrigerator to get a yogurt without looking, there is a 3/5 probability that Lucas will choose a raspberry yogurt.

There is a 3/5 probability that he will choose a red apple if it is the first item he selects.

There is a 9/25 probability that Lucas will eat a raspberry yogurt and a red apple.

Step-by-step explanation:

3/5 x 3/5 = 9/25

Kisachek [45]2 years ago
3 0

Answer:

  • Probability of yogurt being raspberry = 3/5 = 0.6
  • Probability of choosing a red apple = 3/10 = 0.3
  • Probability of raspberry yogurt AND red apple = 9/50 = 0.18

Step-by-step explanation:

Total of 5 yogurts: 3 raspberry + 1 vanilla + 1 peach

Probability of yogurt being raspberry = 3/5 = 0.6

Total of 5 apples: 2 green + 3 red

Total number of snacks = 10

Probability of choosing a red apple = 3/10 = 0.3

Probability of raspberry yogurt AND red apple = 0.6 x 0.3 = 9/50 = 0.18

You might be interested in
I am between 24 and 34 . you say my name when you count by twos from zero. you say my name when you count by fives from zero. wh
jonny [76]
The answer is 30

2 * 15 = 30
5 * 6 = 30
30 is between 24 and 34
4 0
3 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Multiply. a^5 . a . a^0 . a^-3
stiks02 [169]
a^5 \cdot a \cdot a^0 \cdot a^{-3}=a^{5+1-3}\cdot 1 = a^3
6 0
4 years ago
Weight of a rock: In a geology course, students are learning to use a balance scale to accurately weigh rocks. One student plans
dusya [7]

Answer:

The first student, with 20 measurements, will have the more precise interval due to the larger sample size.

Step-by-step explanation:

Margin of error of a confidence interval:

The margin of error of a confidence interval has the following format:

M = z\frac{s}{\sqrt{n}}

In which z is related to the confidence level, s to the standard deviation and n to the sample size.

The margin of error is inversely proportional to the square root of the sample size, which means that a larger sample will lead to a lower margin of error, that is, to a more precise interval.

In this question:

One student will use 5 measurements, other 20. The first student, with 20 measurements, will have the more precise interval due to the larger sample size.

5 0
3 years ago
adrian wants to buy a set of 6 sets of wireless headphones he does not want to spend over $360.how much can he spend per set of
Alex787 [66]

$60 is the absolute maximum he can spend!

3 0
4 years ago
Read 2 more answers
Other questions:
  • In which line is a mistake first made when solving the quadratic equation using the quadratic formula? 4s2 + 100 = 40s Line 1 4s
    11·1 answer
  • Which of the following is the inverse of the relation {(1, 5), (2, 6), (1, 7), (4, 8)}?
    6·1 answer
  • –7 – (x + 3) = 12<br> solve for x
    12·1 answer
  • What is the product of a+3 and −2a2+15a+6b2?
    5·2 answers
  • Find the area of this figure round your answer to the nearest hundredth. Use 3.14 to approximate
    11·1 answer
  • Help me with this <br> !!!!
    7·1 answer
  • Al, Bert, and Rob determined that the sum of their ages is 62. Bert is twice as old as Rob, who is 10 years older than Al. How o
    6·1 answer
  • Find the value of x.
    12·1 answer
  • What is the value of v
    7·2 answers
  • What is the domain of the relation shown
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!