Answer:
the answer is a
Step-by-step explanation:
hope that i helped
Answer:
f¯¹(x) = 23/ (6x + 3)
Step-by-step explanation:
f(x) = (23 – 3x)/6x
The inverse, f¯¹, for the above function can be obtained as follow:
f(x) = (23 – 3x)/6x
Let y be equal to f(x)
Therefore, f(x) = (23 – 3x)/6x will be written as:
y = (23 – 3x)/6x
Next, interchange x and y.
This is illustrated below:
y = (23 – 3x)/6x
x = (23 – 3y)/6y
Next, make y the subject of the above expression. This is illustrated below:
x = (23 – 3y)/6y
Cross multiply
6xy = 23 – 3y
Collect like terms
6xy + 3y = 23
Factorise
y(6x + 3) = 23
Divide both side by (6x + 3)
y = 23/ (6x + 3)
Finally, replace y with f¯¹(x)
y = 23/ (6x + 3)
f¯¹(x) = 23/ (6x + 3)
Therefore, the inverse, f¯¹, for the function f(x) = (23 – 3x)/6x is
f¯¹(x) = 23/ (6x + 3)
You take the three zeros and put them back with the x s
(x-6)(x+5)(x-2) they are reversed when you put them back in
multiply the first two and get
simplify to

Multiply it out again and get

finally simplify and get
So the answer is the first one