Use Hooke's law... (just kidding)
Break down each force vector into horizontal and vertical components.



The resultant force is the sum of these vectors,

and has magnitude

The closest answer is D.
Using function concepts, it is found that the correct option is given by:
a.Yes, this graph represents a polynomial. There are two turning points and the least degree possible is three.
<h3>What is the least degree possible of a polynomial?</h3>
Supposing a polynomial with n turning points, the least possible degree is of n + 1.
In this problem, the polynomial has 2 turning points, hence the least possible degree is of 3 and option a is correct.
More can be learned about functions at brainly.com/question/25537936
#SPJ1
It takes him 35 + 4 = 39 total minutes one way, so it would take him 39 x 2 = 78 minutes for 1 round trip.
convert 5 hours and 12 minutes into minutes: 1 hour = 60 minutes.
5 hours x 60 minutes = 300 minutes.
300 + 12 = 312 total minutes for the week.
Divide total minutes by minutes per round trip:
312 / 78 = 4 round trips total
The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>