Eight thousand four hundred and seventy eight
Answer:
Width of the rectangle = 5 inches
Length of the rectangle = 20 inches
Step-by-step explanation:
Let us assume the width of the rectangle = m in
So, the length of the rectangle = 4 (Width) = (4 m) in
Perimeter of the rectangle = 50 inches
Now, Perimeter of the Rectangle = 2 (LENGTH + WIDTH)
⇒ 2( m + 4m) = 50
or, 2(5m) = 50
⇒ 10m = 50 or, m = 50/10 = 5
⇒ m = 5
So, the width of the rectangle = 5 inches
and the length of the rectangle = 4 m = 4 x 5 = 20 inches
Answer:
1- Circumference: 43.96 Area: 153.86
2- Circumference: 69.08 Area: 379.94
3- Circumference: 40.82 Area: 132.67
4- Circumference: 28.26 Area: 63.59
5- Circumference: 57.78 Area: 265.77
<h3>Hello!</h3>

Negative numbers are always less than positive ones.
Do you remember the symbol for "less than"? That's right, "<" :)
Hence,
-6<3
Because
-6 is negative (the - sign tells us that)
3 is positive

<h3>Notes:</h3>
- Hope everything is clear.
- Let me know if you have any questions!
<h3>Answered by:</h3>
~DiamondS~
Here are some things you should know when solving algebraic equations.
If you add an expression to both sides of an equation, the resulting equation will have the same solution set as the original equation. In other words, they will be equivalent. This is true for all operations. As long both sides are treated the same, the equation will stay balanced.
You will also need to know how to combine like terms. But what are like terms to begin with? Like terms are defined as two terms having the same variable(s) (or lack thereof) and are raised to the same power. In mathematics, something raised to the first power stays the same. So, 5x and 10x are like terms because they both have the same variable and are raised to the first power. You don’t see the exponents because it doesn’t change the value of the terms.
To combine like terms, simplify add the coefficients and keep the common variable(s) and exponent.
The distributive property is another important rule you will need to understand.
The distributive property is used mostly for simplifying parentheses in expressions/equations.
For example, how would you get rid of the parentheses here?
6(x + 1)
If there wasn’t an unknown in between the parentheses, you could just add then multiply. That is what the distributive property solves. The distributive property states that a(b + c) = ab + ac
So, now we can simplify our expression.
6(x + 1) = 6x + 6
Now let's solve your equation.
9v = 8 + v
8v = 8 <-- Subtract v from each side
v = 1 <-- Divide both sides by 8
So, v is equal to 1.