Answers:
Line A is parallel to line D.
Line A is perpendicular to line C.
Line C is perpendicular to line D.
=====================================================
Explanation:
Let's use the slope formula to calculate the slope of the line through (-1,-17) and (3,11)
![(x_1,y_1) = (-1,-17) \text{ and } (x_2,y_2) = (3,11)\\\\m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}\\\\m = \frac{11 - (-17)}{3 - (-1)}\\\\m = \frac{11 + 17}{3 + 1}\\\\m = \frac{28}{4}\\\\m = 7\\\\](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20%28-1%2C-17%29%20%5Ctext%7B%20and%20%7D%20%28x_2%2Cy_2%29%20%20%3D%20%283%2C11%29%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7By_%7B2%7D%20-%20y_%7B1%7D%7D%7Bx_%7B2%7D%20-%20x_%7B1%7D%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B11%20-%20%28-17%29%7D%7B3%20-%20%28-1%29%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B11%20%2B%2017%7D%7B3%20%2B%201%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B28%7D%7B4%7D%5C%5C%5C%5Cm%20%3D%207%5C%5C%5C%5C)
The slope of line A is 7
-------------
Now let's find the slope of line B.
![(x_1,y_1) = (0,4) \text{ and } (x_2,y_2) = (7,-5)\\\\m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}\\\\m = \frac{-5 - 4}{7 - 0}\\\\m = -\frac{9}{7}\\\\](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20%280%2C4%29%20%5Ctext%7B%20and%20%7D%20%28x_2%2Cy_2%29%20%20%3D%20%287%2C-5%29%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7By_%7B2%7D%20-%20y_%7B1%7D%7D%7Bx_%7B2%7D%20-%20x_%7B1%7D%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B-5%20-%204%7D%7B7%20-%200%7D%5C%5C%5C%5Cm%20%3D%20-%5Cfrac%7B9%7D%7B7%7D%5C%5C%5C%5C)
-------------
Now onto line C.
![(x_1,y_1) = (7,1) \text{ and } (x_2,y_2) = (0,2)\\\\m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}\\\\m = \frac{2 - 1}{0 - 7}\\\\m = \frac{1}{-7}\\\\m = -\frac{1}{7}\\\\](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20%287%2C1%29%20%5Ctext%7B%20and%20%7D%20%28x_2%2Cy_2%29%20%20%3D%20%280%2C2%29%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7By_%7B2%7D%20-%20y_%7B1%7D%7D%7Bx_%7B2%7D%20-%20x_%7B1%7D%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B2%20-%201%7D%7B0%20-%207%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B1%7D%7B-7%7D%5C%5C%5C%5Cm%20%3D%20-%5Cfrac%7B1%7D%7B7%7D%5C%5C%5C%5C)
-------------
Lastly we have line D.
![(x_1,y_1) = (-1,-6) \text{ and } (x_2,y_2) = (1,8)\\\\m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}\\\\m = \frac{8 - (-6)}{1 - (-1)}\\\\m = \frac{8 + 6}{1 + 1}\\\\m = \frac{14}{2}\\\\m = 7\\\\](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20%28-1%2C-6%29%20%5Ctext%7B%20and%20%7D%20%28x_2%2Cy_2%29%20%20%3D%20%281%2C8%29%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7By_%7B2%7D%20-%20y_%7B1%7D%7D%7Bx_%7B2%7D%20-%20x_%7B1%7D%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B8%20-%20%28-6%29%7D%7B1%20-%20%28-1%29%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B8%20%2B%206%7D%7B1%20%2B%201%7D%5C%5C%5C%5Cm%20%3D%20%5Cfrac%7B14%7D%7B2%7D%5C%5C%5C%5Cm%20%3D%207%5C%5C%5C%5C)
------------------------------
Here's a summary of the slopes we found
![\begin{array}{|c|c|} \cline{1-2}\text{Line} & \text{Slope}\\\cline{1-2}\text{A} & 7\\\cline{1-2}\text{B} & -9/7\\\cline{1-2}\text{C} & -1/7\\\cline{1-2}\text{D} & 7\\\cline{1-2}\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cc%7Cc%7C%7D%20%5Ccline%7B1-2%7D%5Ctext%7BLine%7D%20%26%20%5Ctext%7BSlope%7D%5C%5C%5Ccline%7B1-2%7D%5Ctext%7BA%7D%20%26%207%5C%5C%5Ccline%7B1-2%7D%5Ctext%7BB%7D%20%26%20-9%2F7%5C%5C%5Ccline%7B1-2%7D%5Ctext%7BC%7D%20%26%20-1%2F7%5C%5C%5Ccline%7B1-2%7D%5Ctext%7BD%7D%20%26%207%5C%5C%5Ccline%7B1-2%7D%5Cend%7Barray%7D)
Recall that parallel lines have equal slopes, but different y intercepts. This fact makes Line A parallel to line D.
Lines A and C are perpendicular to one another, because the slopes 7 and -1/7 multiply to -1. In other words, -1/7 is the negative reciprocal of 7, and vice versa. These two lines form a 90 degree angle.
Lines C and D are perpendicular for the same reasoning as the previous paragraph.
Line B unfortunately is neither parallel nor perpendicular to any of the other lines mentioned.
You can use a graphing tool like Desmos or GeoGebra to verify these answers.