So since the vertex falls onto the axis of symmetry, we can just solve for that to get the x-coordinate of both equations. The equation for the axis of symmetry is
, with b = x coefficient and a = x^2 coefficient. Our equations can be solved as such:
y = 2x^2 − 4x + 12: 
y = 4x^2 + 8x + 3: 
In short, the vertex x-coordinate's of y = 2x^2 − 4x + 12 is 1 while the vertex's x-coordinate of y = 4x^2 + 8x + 3 is -1.

Subtract 10 from both sides.

Since the square of a number, x, equals a negative number, -1, the answer cannot be a real number because the square of a real number is always non-negative. Therefore, there is no real number solution to this equation.
Answer: <span>B. no real number solutions</span>
Μ = (0×0.026) + (1×0.072) +(2×0.152) + (3×0.303) + (4×0.215) + (5×0.164) + (6×0.066)
μ = 0 + 0.072 + 0.304 + 0.909 + 0.86 + 0.82 + 0.396
μ = 3.361 ≈ 3.4
We need the value of ∑X² to work out the variance
∑X² = (0²×0.026) + (1²×0.072) + (2²×0.152) + (3²×0.303) + (4²×0.215) + (5²×0.164) + (6²×0.066)
∑X² = 0+0.072+0.608+2.727+3.44+4.1+2.376
∑X² = 13.323
Variance = ∑X² - μ²
Variance = 13.323 - (3.4)² = 1.763 ≈ 2
Standard Deviation = √Variance = √1.8 = 1.3416... ≈ 1.4
The correct answer related to the value of mean and standard deviation is the option D
<span>
An employee works an average of 3.4 overtime hours per week with a standard deviation of approximately 1.4 hours.</span>
Answer:
B=5,0.
Step-by-step explanation:
It's not that hard. It's just that it might throw you off a bit with the R and the other things. Functions if you don't remember are where the coordinates don't have the same x and y. So since the y1 and y2 are different then to make it not a function, you have to make x1 and x2. To make it that b would have to be = to 5 and 0.
I’m so proud :)!!!! Good job at using your resources