<h2>The graph of y = ax^2 + bx + c
</h2><h2>A nonlinear function that can be written on the standard form
</h2><h2>ax2+bx+c,where a≠0
</h2><h2>All quadratic functions has a U-shaped graph called a parabola. The parent quadratic function is
</h2><h2>
y=x2
</h2><h2>
The lowest or the highest point on a parabola is called the vertex. The vertex has the x-coordinate
</h2><h2>x=−b2a
</h2><h2>The y-coordinate of the vertex is the maximum or minimum value of the function.
</h2><h2>a > 0 parabola opens up minimum value
</h2><h2>a < 0 parabola opens down maximum value
</h2><h2>
A rule of thumb reminds us that when we have a positive symbol before x2 we get a happy expression on the graph and a negative symbol renders a sad expression.
</h2><h2>The vertical line that passes through the vertex and divides the parabola in two is called the axis of symmetry. The axis of symmetry has the equation
</h2><h2>x=−b2a
</h2><h2>The y-intercept of the equation is c.
</h2><h2>
When you want to graph a quadratic function you begin by making a table of values for some values of your function and then plot those values in a coordinate plane and draw a smooth curve through the points.</h2>
Answer:
i think it is 1% sry if wrong
Step-by-step explanation:
Answer:
-10y + 11.4
I hope this helps you out
A^-b is the same as 1/a^b.
When there is a negative power, place the number and power over 1.
a^b/a^c = a^(b-c).
c is a negative power, because it is being divided, and is underneath b, which is a positive (and so it stays in the numerator).
a^c/b^c = (a/b)^c
Inside this one, the power of c is distributed to all numbers inside the parenthesis, in this case a and b.
hope this helps
Answer:
f(2) = 3
Step-by-step explanation:
We are given:
f(0) = 3
and
f(n+1) = -f(n) + 5
We have to find the value of f(2). In order to find f(2) we first have to find f(1)
f(n + 1) = - f(n) + 5
Using n = 0, we get:
f(0 + 1) = - f(0) + 5
f(1) = -f(0) + 5 Using the value of f(0), we get
f(1) = -3 + 5 = 2
Now using n = 1 in the function, we get:
f(1 + 1) = - f(1) + 5 Using the value of f(1), we get
f(2) = -2+ 5
f(2) = 3
Thus the value of f(2) will be 3