Answer:
b. 
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>
</u>
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Rewrite function [Exponential Rule - Root Rewrite]:
![\displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%28x%29%20%3D%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D)
- Chain Rule:
![\displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cbigg%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5BF%28x%29%5D)
- Basic Power Rule:
![\displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%20-%201%7D%20%5Ccdot%20F%27%28x%29)
- Simplify:
![\displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B-2%7D%7B3%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
<u>Step 3: Evaluate</u>
- Substitute in <em>x</em> [Derivative]:
![\displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%285%29%20%3D%20%5Cfrac%7BF%27%285%29%7D%7B3%5BF%285%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
- Substitute in function values:

- Exponents:

- Multiply:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
124250cm, 1242.5m or 1.2425km
Step-by-step explanation:
0.6% = 6/100
6/100 = 0.006
0.006*1.25 = 0.0075
1.25km = 1250m = 125000cm
0.0075km = 7.5m = 750cm
125000 - 750 = 124250
Therefore:
The answer is 124250cm, 1242.5m or 1.2425km
Sub to oTechz :)
The correct answer to your question is 6, option B.
The degree of a polynomial is the highest exponent or power of the variable that is involved in the expression. In the above question we have only one variable which is x, and from the given terms we can see that the highest power of x is 6. So the degree of polynomial is 6. The degree of polynomials helps us to know about the end behavior of the graph.
3.25 can be re-written as;
=3+0.25
Converting the decimal to a fraction gives;
3+

=Simplify the fraction;
3+

The final answer is;
3
Answer:
2 cans
Step-by-step explanation:
Calculate how many pounds he needs for one day:
3(0.5)=1.5 pounds for each day Alvin is gone ( 3 represents his dogs, .5 is each dog's food)
Convert into ounces:
1.5*16=24 ounces for one day
Question: If dog food is sold in 12 oz cans, how many will he need?
24/12=2 cans
Thus, he will need 2 cans