Henry correctly factored 4x^(2)+5x-6 as (4x-3)(x+2). He then claimed that the zeros of that quadratic function are located at x=
-(1)/(2) and x=2. Did Henry correctly find the zeros of the function?
1 answer:
Answer:
I believe Henrey is wrong
Step-by-step explanation:
because the roots of the quadratic function are
<em>"</em><em>(</em><em>x</em><em>=</em><em> </em><em>3</em><em>/</em><em>4</em><em>,</em><em> </em><em>-</em><em>2</em><em>)</em><em>.</em><em>"</em>
You might be interested in
Hi
6*3 + (9-3)
= 18 + 3
= 21
I hope that's help !
1/4b=-3
Solve for b
1/4b *4 = -3*4
b = -3 *4
b = -12
Answer: b = -12
It is a linear equation so there can be 1 solution, 0 solutions, or infinite solutions
4(x-5)=4x-24
distribute
4x -20 = 4x-24
subtract 4x from each side
-20 = -24
no solutions
Answer:
2 (x + 4)(3x - 25)
Step-by-step explanation:
![6 {x}^{2} - 26x - 200](https://tex.z-dn.net/?f=6%20%7Bx%7D%5E%7B2%7D%20%20-%2026x%20-%20200)
![3 {x}^{2} - 13x - 100](https://tex.z-dn.net/?f=3%20%7Bx%7D%5E%7B2%7D%20%20-%2013x%20-%20100)
![2 (x + 4)(3x - 25)](https://tex.z-dn.net/?f=2%20%28x%20%2B%204%29%283x%20-%2025%29)
The answer is
5q/2 or q×5/2